Symmetric $\alpha$-stable distributions for noninteger $\alpha>2$ and related stochastic processes
Zapiski Nauchnykh Seminarov POMI, Probability and statistics. Part 23, Tome 442 (2015), pp. 101-117 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice du chapitre de livre

We construct analogues of symmetric $\alpha$-stable distributions for noninteger indices $\alpha>2$ and investigate their links to solutions of the Cauchy problem for some evolution equations.
@article{ZNSL_2015_442_a5,
     author = {M. V. Platonova},
     title = {Symmetric $\alpha$-stable distributions for noninteger $\alpha>2$ and related stochastic processes},
     journal = {Zapiski Nauchnykh Seminarov POMI},
     pages = {101--117},
     year = {2015},
     volume = {442},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZNSL_2015_442_a5/}
}
TY  - JOUR
AU  - M. V. Platonova
TI  - Symmetric $\alpha$-stable distributions for noninteger $\alpha>2$ and related stochastic processes
JO  - Zapiski Nauchnykh Seminarov POMI
PY  - 2015
SP  - 101
EP  - 117
VL  - 442
UR  - http://geodesic.mathdoc.fr/item/ZNSL_2015_442_a5/
LA  - ru
ID  - ZNSL_2015_442_a5
ER  - 
%0 Journal Article
%A M. V. Platonova
%T Symmetric $\alpha$-stable distributions for noninteger $\alpha>2$ and related stochastic processes
%J Zapiski Nauchnykh Seminarov POMI
%D 2015
%P 101-117
%V 442
%U http://geodesic.mathdoc.fr/item/ZNSL_2015_442_a5/
%G ru
%F ZNSL_2015_442_a5
M. V. Platonova. Symmetric $\alpha$-stable distributions for noninteger $\alpha>2$ and related stochastic processes. Zapiski Nauchnykh Seminarov POMI, Probability and statistics. Part 23, Tome 442 (2015), pp. 101-117. http://geodesic.mathdoc.fr/item/ZNSL_2015_442_a5/

[1] I. A. Ibragimov, N. V. Smorodina, M. M. Faddeev, “Kompleksnyi analog tsentralnoi predelnoi teoremy i veroyatnostnaya approksimatsiya integrala Feinmana”, Doklady Akademii nauk, 459:4 (2014), 400–402 | DOI | Zbl

[2] T. Kato, Teoriya vozmuschenii lineinykh operatorov, Mir, M., 1972

[3] Dzh. Kingman, Puassonovskie protsessy, MTsNMO, M., 2007

[4] P. Kusis, Vvedenie v teoriyu prostranstv $H_p$, Mir, M., 1984 | MR

[5] A. Lachal, From pseudo-random walk to pseudo-Brownian motion: first exit time from a one-sided or a two-sided interval, arXiv: 1301.6579 | MR

[6] E. Orsingher, B. Toaldo, “Pseudoprocesses related to space-fractional higher-order heat-type equations”, Stochast. Anal. Appl., 32:4 (2014), 619–641 | DOI | MR | Zbl

[7] S. G. Samko, A. A. Kilbas, O. I. Marichev, Integraly i proizvodnye drobnogo poryadka i nekotorye ikh prilozheniya, Nauka i tekhnika, Minsk, 1987 | MR

[8] N. V. Smorodina, M. M. Faddeev, “Teoremy o skhodimosti raspredelenii stokhasticheskikh integralov k znakoperemennym meram i lokalnye predelnye teoremy dlya bolshikh uklonenii”, Zap. nauchn. semin. POMI, 368, 2009, 201–228 | MR

[9] N. V. Smorodina, M. M. Faddeev, “The Lévy–Khinchin representation of the one class of signed stable measures and some its applications”, Acta Appl. Math., 110 (2010), 1289–1308 | DOI | MR | Zbl