@article{ZNSL_2015_442_a5,
author = {M. V. Platonova},
title = {Symmetric $\alpha$-stable distributions for noninteger $\alpha>2$ and related stochastic processes},
journal = {Zapiski Nauchnykh Seminarov POMI},
pages = {101--117},
year = {2015},
volume = {442},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/ZNSL_2015_442_a5/}
}
M. V. Platonova. Symmetric $\alpha$-stable distributions for noninteger $\alpha>2$ and related stochastic processes. Zapiski Nauchnykh Seminarov POMI, Probability and statistics. Part 23, Tome 442 (2015), pp. 101-117. http://geodesic.mathdoc.fr/item/ZNSL_2015_442_a5/
[1] I. A. Ibragimov, N. V. Smorodina, M. M. Faddeev, “Kompleksnyi analog tsentralnoi predelnoi teoremy i veroyatnostnaya approksimatsiya integrala Feinmana”, Doklady Akademii nauk, 459:4 (2014), 400–402 | DOI | Zbl
[2] T. Kato, Teoriya vozmuschenii lineinykh operatorov, Mir, M., 1972
[3] Dzh. Kingman, Puassonovskie protsessy, MTsNMO, M., 2007
[4] P. Kusis, Vvedenie v teoriyu prostranstv $H_p$, Mir, M., 1984 | MR
[5] A. Lachal, From pseudo-random walk to pseudo-Brownian motion: first exit time from a one-sided or a two-sided interval, arXiv: 1301.6579 | MR
[6] E. Orsingher, B. Toaldo, “Pseudoprocesses related to space-fractional higher-order heat-type equations”, Stochast. Anal. Appl., 32:4 (2014), 619–641 | DOI | MR | Zbl
[7] S. G. Samko, A. A. Kilbas, O. I. Marichev, Integraly i proizvodnye drobnogo poryadka i nekotorye ikh prilozheniya, Nauka i tekhnika, Minsk, 1987 | MR
[8] N. V. Smorodina, M. M. Faddeev, “Teoremy o skhodimosti raspredelenii stokhasticheskikh integralov k znakoperemennym meram i lokalnye predelnye teoremy dlya bolshikh uklonenii”, Zap. nauchn. semin. POMI, 368, 2009, 201–228 | MR
[9] N. V. Smorodina, M. M. Faddeev, “The Lévy–Khinchin representation of the one class of signed stable measures and some its applications”, Acta Appl. Math., 110 (2010), 1289–1308 | DOI | MR | Zbl