On the strong law of large numbers for sequence of independent random variables
Zapiski Nauchnykh Seminarov POMI, Probability and statistics. Part 23, Tome 442 (2015), pp. 97-100
Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice du chapitre de livre

New sufficient conditions for the applicability of the strong law of large numbers are established for a sequence of independent random variables.
@article{ZNSL_2015_442_a4,
     author = {V. M. Korchevsky},
     title = {On the strong law of large numbers for sequence of independent random variables},
     journal = {Zapiski Nauchnykh Seminarov POMI},
     pages = {97--100},
     year = {2015},
     volume = {442},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZNSL_2015_442_a4/}
}
TY  - JOUR
AU  - V. M. Korchevsky
TI  - On the strong law of large numbers for sequence of independent random variables
JO  - Zapiski Nauchnykh Seminarov POMI
PY  - 2015
SP  - 97
EP  - 100
VL  - 442
UR  - http://geodesic.mathdoc.fr/item/ZNSL_2015_442_a4/
LA  - ru
ID  - ZNSL_2015_442_a4
ER  - 
%0 Journal Article
%A V. M. Korchevsky
%T On the strong law of large numbers for sequence of independent random variables
%J Zapiski Nauchnykh Seminarov POMI
%D 2015
%P 97-100
%V 442
%U http://geodesic.mathdoc.fr/item/ZNSL_2015_442_a4/
%G ru
%F ZNSL_2015_442_a4
V. M. Korchevsky. On the strong law of large numbers for sequence of independent random variables. Zapiski Nauchnykh Seminarov POMI, Probability and statistics. Part 23, Tome 442 (2015), pp. 97-100. http://geodesic.mathdoc.fr/item/ZNSL_2015_442_a4/

[1] V. V. Petrov, Summy nezavisimykh sluchainykh velichin, Nauka, M., 1972 | MR

[2] V. V. Petrov, “Ob usilennom zakone bolshikh chisel”, Teoriya veroyatn. i ee primen., 14:2 (1969), 193–202 | MR | Zbl

[3] V. Korchevsky, “A generalization of the Petrov strong law of large numbers”, Statist. Probab. Letters, 104 (2015), 102–108 | DOI | MR | Zbl

[4] J. Marcinkiewicz, A. Zygmund, “Quelques théorèmes sur les fonctions indépendantes”, Studia Math., 7 (1938), 104–120 | Zbl

[5] T. Kawata, Fourier Analysis in Probability Theory, Academic Press, New York, 1972 | MR | Zbl

[6] V. V. Petrov, “Ob usilennom zakone bolshikh chisel dlya posledovatelnosti neotritsatelnykh sluchainykh velichin”, Teoriya veroyatn. i ee primen., 53:2 (2008), 379–382 | DOI | Zbl