Voir la notice du chapitre de livre
@article{ZNSL_2015_442_a4,
author = {V. M. Korchevsky},
title = {On the strong law of large numbers for sequence of independent random variables},
journal = {Zapiski Nauchnykh Seminarov POMI},
pages = {97--100},
year = {2015},
volume = {442},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/ZNSL_2015_442_a4/}
}
V. M. Korchevsky. On the strong law of large numbers for sequence of independent random variables. Zapiski Nauchnykh Seminarov POMI, Probability and statistics. Part 23, Tome 442 (2015), pp. 97-100. http://geodesic.mathdoc.fr/item/ZNSL_2015_442_a4/
[1] V. V. Petrov, Summy nezavisimykh sluchainykh velichin, Nauka, M., 1972 | MR
[2] V. V. Petrov, “Ob usilennom zakone bolshikh chisel”, Teoriya veroyatn. i ee primen., 14:2 (1969), 193–202 | MR | Zbl
[3] V. Korchevsky, “A generalization of the Petrov strong law of large numbers”, Statist. Probab. Letters, 104 (2015), 102–108 | DOI | MR | Zbl
[4] J. Marcinkiewicz, A. Zygmund, “Quelques théorèmes sur les fonctions indépendantes”, Studia Math., 7 (1938), 104–120 | Zbl
[5] T. Kawata, Fourier Analysis in Probability Theory, Academic Press, New York, 1972 | MR | Zbl
[6] V. V. Petrov, “Ob usilennom zakone bolshikh chisel dlya posledovatelnosti neotritsatelnykh sluchainykh velichin”, Teoriya veroyatn. i ee primen., 53:2 (2008), 379–382 | DOI | Zbl