Mean width of regular polytopes and expected maxima of correlated Gaussian variables
Zapiski Nauchnykh Seminarov POMI, Probability and statistics. Part 23, Tome 442 (2015), pp. 75-96 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice du chapitre de livre

An old conjecture states that among all simplices inscribed in the unit sphere, the regular one has the maximal mean width. We restate this conjecture probabilistically and prove its asymptotic version. We also show that the mean width of the regular simplex with $2n$ vertices is remarkably close to the mean width of the regular crosspolytope with the same number of vertices. We establish several formulas conjectured by S. Finch on projection length $W$ of the regular cube, simplex and crosspolytope onto a line with random direction. Finally, we prove distributional limit theorems for $W$ as the dimension of the regular polytope goes to $\infty$.
@article{ZNSL_2015_442_a3,
     author = {Z. Kabluchko and A. E. Litvak and D. Zaporozhets},
     title = {Mean width of regular polytopes and expected maxima of correlated {Gaussian} variables},
     journal = {Zapiski Nauchnykh Seminarov POMI},
     pages = {75--96},
     year = {2015},
     volume = {442},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/ZNSL_2015_442_a3/}
}
TY  - JOUR
AU  - Z. Kabluchko
AU  - A. E. Litvak
AU  - D. Zaporozhets
TI  - Mean width of regular polytopes and expected maxima of correlated Gaussian variables
JO  - Zapiski Nauchnykh Seminarov POMI
PY  - 2015
SP  - 75
EP  - 96
VL  - 442
UR  - http://geodesic.mathdoc.fr/item/ZNSL_2015_442_a3/
LA  - en
ID  - ZNSL_2015_442_a3
ER  - 
%0 Journal Article
%A Z. Kabluchko
%A A. E. Litvak
%A D. Zaporozhets
%T Mean width of regular polytopes and expected maxima of correlated Gaussian variables
%J Zapiski Nauchnykh Seminarov POMI
%D 2015
%P 75-96
%V 442
%U http://geodesic.mathdoc.fr/item/ZNSL_2015_442_a3/
%G en
%F ZNSL_2015_442_a3
Z. Kabluchko; A. E. Litvak; D. Zaporozhets. Mean width of regular polytopes and expected maxima of correlated Gaussian variables. Zapiski Nauchnykh Seminarov POMI, Probability and statistics. Part 23, Tome 442 (2015), pp. 75-96. http://geodesic.mathdoc.fr/item/ZNSL_2015_442_a3/

[1] R. Adler, J. Taylor, Random fields and geometry, Springer, New York, 2009 | MR

[2] F. Affentranger, R. Schneider, “Random projections of regular simplices”, Discrete Comput. Geom., 7:3 (1992), 219–226 | DOI | MR | Zbl

[3] A. Balakrishnan, “Research problem no. 9: Geometry”, Bull. Amer. Math. Soc., 69 (1963), 737–738 | DOI | MR

[4] A. Balakrishnan, “Signal selection for space communication channels”, Advances in Communication Systems, ed. A. Balakrishnan, Academic Press, New York, 1965, 1–31

[5] V. Bentkus, B.-Y. Jing, Q.-M. Shao, W. Zhou, “Limiting distributions of the non-central $t$-statistic and their applications to the power of $t$-tests under non-normality”, Bernoulli, 13:2 (2007), 346–364 | DOI | MR | Zbl

[6] A. Bulinski, A. Shashkin, Limit theorems for associated random fields and related systems, World Scientific, Singapore, 2007 | MR

[7] S. Chatterjee, An error bound in the Sudakov–Fernique inequality, 2005, arXiv: math/0510424

[8] S. Chatterjee, Superconcentration and related topics, Springer International Publishing, Switzerland, 2014 | MR | Zbl

[9] T. M. Cover, B. Gopinath, Open problems in communication and computation, Springer, New York, 1987 | MR | Zbl

[10] V. H. de la Peña, T. L. Lai, Q.-M. Shao, Self-normalized processes. Limit theory and statistical applications, Springer, Berlin, 2009 | MR | Zbl

[11] S. R. Finch, Mean width of a regular cross-polytope, 2011, arXiv: 1112.0499

[12] S. R. Finch, Mean width of a regular simplex, 2011, arXiv: 1111.4976

[13] S. R. Finch, Width distributions for convex regular polyhedra, 2011, arXiv: 1110.0671

[14] E. Gilbert, “A comparison of signalling alphabets”, Bell Syst. Tech. J., 31:3 (1952), 504–522 | DOI

[15] P. Gritzmann, V. Klee, “On the complexity of some basic problems in computational convexity. II: Volume and mixed volumes”, Polytopes: abstract, convex and computational, eds. T. Bisztriczky, P. McMullen, R. Schneider, A. Ivíc Weiss, Springer Science+Business Media, Dordrecht, 1994, 373–466 | DOI | MR

[16] K. Joag-Dev, F. Proschan, “Negative association of random variables with applications”, Ann. Statist., 11 (1983), 286–295 | DOI | MR | Zbl

[17] M. Leadbetter, G. Lindgren, H. Rootzén, Extremes and related properties of random sequences and processes, Springer, New York–Berlin, 1983 | MR | Zbl

[18] E. Omey, S. Van Gulck, “Domains of attraction of the real random vector $(X,X^2)$ and applications”, Publ. Inst. Math., Nouv. Sér., 86 (2009), 41–53 | DOI | MR | Zbl

[19] J. Pickands, “Moment convergence of sample extremes”, Ann. Math. Statist., 39 (1968), 881–889 | DOI | MR | Zbl

[20] R. Schneider, Convex bodies: the Brunn–Minkowski theory, Cambridge University Press, Cambridge, 1993 | MR | Zbl

[21] V. Sudakov, “Geometric problems in the theory of infinite-dimensional probability distributions”, Trudy Matem. Inst. Steklov, 141, 1976, 3–191 | MR | Zbl

[22] C. Weber, Elements of detection and signal design, Springer, New York, 1987 | Zbl