@article{ZNSL_2015_442_a3,
author = {Z. Kabluchko and A. E. Litvak and D. Zaporozhets},
title = {Mean width of regular polytopes and expected maxima of correlated {Gaussian} variables},
journal = {Zapiski Nauchnykh Seminarov POMI},
pages = {75--96},
year = {2015},
volume = {442},
language = {en},
url = {http://geodesic.mathdoc.fr/item/ZNSL_2015_442_a3/}
}
TY - JOUR AU - Z. Kabluchko AU - A. E. Litvak AU - D. Zaporozhets TI - Mean width of regular polytopes and expected maxima of correlated Gaussian variables JO - Zapiski Nauchnykh Seminarov POMI PY - 2015 SP - 75 EP - 96 VL - 442 UR - http://geodesic.mathdoc.fr/item/ZNSL_2015_442_a3/ LA - en ID - ZNSL_2015_442_a3 ER -
Z. Kabluchko; A. E. Litvak; D. Zaporozhets. Mean width of regular polytopes and expected maxima of correlated Gaussian variables. Zapiski Nauchnykh Seminarov POMI, Probability and statistics. Part 23, Tome 442 (2015), pp. 75-96. http://geodesic.mathdoc.fr/item/ZNSL_2015_442_a3/
[1] R. Adler, J. Taylor, Random fields and geometry, Springer, New York, 2009 | MR
[2] F. Affentranger, R. Schneider, “Random projections of regular simplices”, Discrete Comput. Geom., 7:3 (1992), 219–226 | DOI | MR | Zbl
[3] A. Balakrishnan, “Research problem no. 9: Geometry”, Bull. Amer. Math. Soc., 69 (1963), 737–738 | DOI | MR
[4] A. Balakrishnan, “Signal selection for space communication channels”, Advances in Communication Systems, ed. A. Balakrishnan, Academic Press, New York, 1965, 1–31
[5] V. Bentkus, B.-Y. Jing, Q.-M. Shao, W. Zhou, “Limiting distributions of the non-central $t$-statistic and their applications to the power of $t$-tests under non-normality”, Bernoulli, 13:2 (2007), 346–364 | DOI | MR | Zbl
[6] A. Bulinski, A. Shashkin, Limit theorems for associated random fields and related systems, World Scientific, Singapore, 2007 | MR
[7] S. Chatterjee, An error bound in the Sudakov–Fernique inequality, 2005, arXiv: math/0510424
[8] S. Chatterjee, Superconcentration and related topics, Springer International Publishing, Switzerland, 2014 | MR | Zbl
[9] T. M. Cover, B. Gopinath, Open problems in communication and computation, Springer, New York, 1987 | MR | Zbl
[10] V. H. de la Peña, T. L. Lai, Q.-M. Shao, Self-normalized processes. Limit theory and statistical applications, Springer, Berlin, 2009 | MR | Zbl
[11] S. R. Finch, Mean width of a regular cross-polytope, 2011, arXiv: 1112.0499
[12] S. R. Finch, Mean width of a regular simplex, 2011, arXiv: 1111.4976
[13] S. R. Finch, Width distributions for convex regular polyhedra, 2011, arXiv: 1110.0671
[14] E. Gilbert, “A comparison of signalling alphabets”, Bell Syst. Tech. J., 31:3 (1952), 504–522 | DOI
[15] P. Gritzmann, V. Klee, “On the complexity of some basic problems in computational convexity. II: Volume and mixed volumes”, Polytopes: abstract, convex and computational, eds. T. Bisztriczky, P. McMullen, R. Schneider, A. Ivíc Weiss, Springer Science+Business Media, Dordrecht, 1994, 373–466 | DOI | MR
[16] K. Joag-Dev, F. Proschan, “Negative association of random variables with applications”, Ann. Statist., 11 (1983), 286–295 | DOI | MR | Zbl
[17] M. Leadbetter, G. Lindgren, H. Rootzén, Extremes and related properties of random sequences and processes, Springer, New York–Berlin, 1983 | MR | Zbl
[18] E. Omey, S. Van Gulck, “Domains of attraction of the real random vector $(X,X^2)$ and applications”, Publ. Inst. Math., Nouv. Sér., 86 (2009), 41–53 | DOI | MR | Zbl
[19] J. Pickands, “Moment convergence of sample extremes”, Ann. Math. Statist., 39 (1968), 881–889 | DOI | MR | Zbl
[20] R. Schneider, Convex bodies: the Brunn–Minkowski theory, Cambridge University Press, Cambridge, 1993 | MR | Zbl
[21] V. Sudakov, “Geometric problems in the theory of infinite-dimensional probability distributions”, Trudy Matem. Inst. Steklov, 141, 1976, 3–191 | MR | Zbl
[22] C. Weber, Elements of detection and signal design, Springer, New York, 1987 | Zbl