@article{ZNSL_2015_442_a0,
author = {V. Bagdonavi\v{c}ius and M. Nikulin and A. Zerbet},
title = {On outliers detection for location-scale and shape-scale families},
journal = {Zapiski Nauchnykh Seminarov POMI},
pages = {5--17},
year = {2015},
volume = {442},
language = {en},
url = {http://geodesic.mathdoc.fr/item/ZNSL_2015_442_a0/}
}
V. Bagdonavičius; M. Nikulin; A. Zerbet. On outliers detection for location-scale and shape-scale families. Zapiski Nauchnykh Seminarov POMI, Probability and statistics. Part 23, Tome 442 (2015), pp. 5-17. http://geodesic.mathdoc.fr/item/ZNSL_2015_442_a0/
[1] N. Balakrishnan, “Permanents, order statistics, outliers, and robustness”, Revista Matemática Complutense, 20 (2007), 7–107 | MR | Zbl
[2] V. Barnett, T. Lewis, Outliers in Statistical Data, Wiley, New York, 1994 | MR | Zbl
[3] L. N. Bolshev, M. K. Ubaidulaeva, “Kriterii Shovene v klassicheskoi teorii oshibok”, Teoriya veroyatn. i ee primen., 19:4 (1974), 714–723 | MR | Zbl
[4] L. N. Bolshev, N. V. Smirnov, Tablitsy matematicheskoi statistiki, VTs AN SSSR, M., 1968 | MR
[5] M. S. Chikkagoudar, S. H. Kunchur, “Distribution of test statistics for multiple outliers in exponential samples”, Commun. Statist. Theory Methods, 12 (1983), 2127–2142 | DOI | MR
[6] W. J. Dixon, “Analysis of extreme values”, Ann. Math. Statist., 21 (1950), 488–506 | DOI | MR | Zbl
[7] K. Y. Fung, S. R. Paul, “Comparisons of outlier detection procedures in Weibull or extreme-value distribution”, Commun. Statist. – Simulation Computation, 14 (1985), 895–917 | DOI
[8] F. E. Grubbs, “Sample criteria for testing outlying observations”, Ann. Math. Statist., 21 (1950), 27–58 | DOI | MR | Zbl
[9] I. A. Ibragimov, N. M. Khalfina, “Nekotorye asimptoticheskie rezultaty, svyazannye s kriteriem Shovene”, Teoriya veroyatn. i ee primen., 23:3 (1978), 615–619 | MR | Zbl
[10] D. G. Kabe, “Testing outliers from an exponential population”, Metrika, 15 (1970), 15–18 | DOI | Zbl
[11] N. Kumar, “Test for multiple upper outliers in an exponential sample irrespective of origin”, Statistics, 47 (2013), 184–190 | DOI | MR | Zbl
[12] S. Lalitha, N. Kumar, “Testing for upper outliers in gamma sample”, Commun. Statist. – Theory Methods, 41 (2012), 820–828 | DOI | MR | Zbl
[13] T. Lewis, N. R. Fiellerm, “A recursive algorithm for null distribution for outliers: I. Gamma samples”, Technometrics, 21 (1979), 371–376 | DOI | MR | Zbl
[14] J. Likes, “Distribution of Dixon's statistics in the case of an exponential population”, Metrika, 11 (1966), 46–54 | DOI | MR | Zbl
[15] Yu. V. Linnik, Metod naimenshikh kvadratov i osnovy teorii obrabotki nablyudenii, Fizmatlit, M., 1962
[16] N. R. Mann, E. M. Scheuer, K. W. Fertig, “A new goodness-of-fit test for the two parameter Weibull or extreme-value distribution with unknown parameters”, Commun. Statist. – Theory Methods, 2 (1973), 383–400 | DOI | MR | Zbl
[17] N. R. Mann, “Optimal outlier tests for a Weibull model to identify process changes or predict failure times”, Studies in the Management Sciences, 19 (1981), 261–270
[18] V. I. Pagurova, “O kriterii Shovene dlya obnaruzheniya neskolkikh vybrosov”, Teoriya veroyatn. i ee primen., 30:3 (1985), 558–561 | MR | Zbl
[19] R. Pyke, “Spacings”, J. Roy. Statist. Soc., 3 (1965), 395–449 | MR
[20] B. Rosner, “On the detection of many outliers”, Technometrics, 17 (1975), 221–227 | DOI | MR | Zbl
[21] G. Tietjen, R. Moore, “Some Grubbs-type statistics for the detection of several outliers”, Technometrics, 14 (1972), 583–597 | DOI
[22] A. Zerbet, M. Nikulin, “A new statistic for detecting outliers in exponential case”, Commun. Statist. – Theory Methods, 32 (2003), 573–584 | DOI | MR