On convex hull and winding number of self-similar processes
Zapiski Nauchnykh Seminarov POMI, Probability and statistics. Part 22, Tome 441 (2015), pp. 154-162

Voir la notice de l'article provenant de la source Math-Net.Ru

It is well known that for a standard Brownian motion (BM) $\{B(t),\ t\geq0\}$ with values in $\mathbf R^d$, its convex hull $V(t)=\mathrm{conv}\{B(s),\ s\leq t\}$ with probability $1$ for each $t>0$ contains $0$ as an interior point (see Evans [3]). We also know that the winding number of a typical path of a two-dimensional BM is equal to $+\infty$. The aim of this article is to show that these properties aren't specifically “Brownian”, but hold for a much larger class of $d$-dimensional self-similar processes. This class contains in particular $d$-dimensional fractional Brownian motions and (concerning convex hulls) strictly stable Lévy processes.
@article{ZNSL_2015_441_a9,
     author = {Yu. Davydov},
     title = {On convex hull and winding number of self-similar processes},
     journal = {Zapiski Nauchnykh Seminarov POMI},
     pages = {154--162},
     publisher = {mathdoc},
     volume = {441},
     year = {2015},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/ZNSL_2015_441_a9/}
}
TY  - JOUR
AU  - Yu. Davydov
TI  - On convex hull and winding number of self-similar processes
JO  - Zapiski Nauchnykh Seminarov POMI
PY  - 2015
SP  - 154
EP  - 162
VL  - 441
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/ZNSL_2015_441_a9/
LA  - en
ID  - ZNSL_2015_441_a9
ER  - 
%0 Journal Article
%A Yu. Davydov
%T On convex hull and winding number of self-similar processes
%J Zapiski Nauchnykh Seminarov POMI
%D 2015
%P 154-162
%V 441
%I mathdoc
%U http://geodesic.mathdoc.fr/item/ZNSL_2015_441_a9/
%G en
%F ZNSL_2015_441_a9
Yu. Davydov. On convex hull and winding number of self-similar processes. Zapiski Nauchnykh Seminarov POMI, Probability and statistics. Part 22, Tome 441 (2015), pp. 154-162. http://geodesic.mathdoc.fr/item/ZNSL_2015_441_a9/