Discriminant and root separation of integral polynomials
Zapiski Nauchnykh Seminarov POMI, Probability and statistics. Part 22, Tome 441 (2015), pp. 144-153 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice du chapitre de livre

Consider a random polynomial $$ G_Q(x)=\xi_{Q,n}x^n+\xi_{Q,n-1}x^{n-1}+\dots+\xi_{Q,0} $$ with independent coefficients uniformly distributed on $2Q+1$ integer points $\{-Q,\dots,Q\}$. Denote by $D(G_Q)$ the discriminant of $G_Q$. We show that there exists a constant $C_n$, depending on $n$ only such that for all $Q\ge2$ the distribution of $D(G_Q)$ can be approximated as follows $$ \sup_{-\infty\leq a\leq b\leq\infty}\left|\mathbf P\left(a\leq\frac{D(G_Q)}{Q^{2n-2}}\leq b\right)-\int_a^b\varphi_n(x)\,dx\right|\leq\frac{C_n}{\log Q}, $$ where $\varphi_n$ denotes the probability density function of the discriminant of a random polynomial of degree $n$ with independent coefficients which are uniformly distributed on $[-1,1]$. Let $\Delta(G_Q)$ denote the minimal distance between the complex roots of $G_Q$. As an application we show that for any $\varepsilon>0$ there exists a constant $\delta_n>0$ such that $\Delta(G_Q)$ is stochastically bounded from below/above for all sufficiently large $Q$ in the following sense $$ \mathbf P\left(\delta_n<\Delta(G_Q)<\frac1{\delta_n}\right)>1-\varepsilon. $$
@article{ZNSL_2015_441_a8,
     author = {F. G\"otze and D. Zaporozhets},
     title = {Discriminant and root separation of integral polynomials},
     journal = {Zapiski Nauchnykh Seminarov POMI},
     pages = {144--153},
     year = {2015},
     volume = {441},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/ZNSL_2015_441_a8/}
}
TY  - JOUR
AU  - F. Götze
AU  - D. Zaporozhets
TI  - Discriminant and root separation of integral polynomials
JO  - Zapiski Nauchnykh Seminarov POMI
PY  - 2015
SP  - 144
EP  - 153
VL  - 441
UR  - http://geodesic.mathdoc.fr/item/ZNSL_2015_441_a8/
LA  - en
ID  - ZNSL_2015_441_a8
ER  - 
%0 Journal Article
%A F. Götze
%A D. Zaporozhets
%T Discriminant and root separation of integral polynomials
%J Zapiski Nauchnykh Seminarov POMI
%D 2015
%P 144-153
%V 441
%U http://geodesic.mathdoc.fr/item/ZNSL_2015_441_a8/
%G en
%F ZNSL_2015_441_a8
F. Götze; D. Zaporozhets. Discriminant and root separation of integral polynomials. Zapiski Nauchnykh Seminarov POMI, Probability and statistics. Part 22, Tome 441 (2015), pp. 144-153. http://geodesic.mathdoc.fr/item/ZNSL_2015_441_a8/

[1] V. Beresnevich, V. Bernik, F. Götze, “The distribution of close conjugate algebraic numbers”, Compos. Math., 146 (2010), 1165–1179 | DOI | MR | Zbl

[2] V. Beresnevich, V. Bernik, F. Götze, Integral polynomials with small discriminants and resultants, Preprint, 2015, arXiv: 1501.05767

[3] V. Beresnevich, V. Bernik, F. Götze, O. Kukso, “Distribution of algebraic numbers and metric theory of diophantine approximation”, Limit Theorems in Probability, Statistics and Number Theory, Springer, 2013, 23–48 | MR | Zbl

[4] V. Bernik, F. Götze, O. Kukso, “Lower bounds for the number of integral polynomials with given order of discriminants”, Acta Arith., 133 (2008), 375–390 | DOI | MR | Zbl

[5] Y. Bugeaud, A. Dujella, “Root separation for irreducible integer polynomials”, Bull. London Math. Soc., 162 (2011), 1239–1244 | DOI | MR

[6] Y. Bugeaud, A. Dujella, “Root separation for reducible integer polynomials”, Acta Arith., 162 (2014), 393–403 | DOI | MR | Zbl

[7] Y. Bugeaud, M. Mignotte, “On the distance between roots of integer polynomials”, Proc. Edinb. Math. Soc., 47:2 (2004), 553–556 | DOI | MR | Zbl

[8] Y. Bugeaud, M. Mignotte, “Polynomial root separation”, Int. J. Number Theor., 6:03 (2010), 587–602 | DOI | MR | Zbl

[9] J.-H. Evertse, “Distances between the conjugates of an algebraic number”, Publ. Math. Debrecen, 65 (2004), 323–340 | MR | Zbl

[10] F. Götze, D. Kaliada, M. Korolev, On the number of integral quadratic polynomials with bounded heights and discriminants, Preprint, 2013, arXiv: 1308.2091

[11] D. Kaliada, F. Götze, O. Kukso, The asymptotic number of integral cubic polynomials with bounded heights and discriminants, Preprint, 2013, arXiv: 1307.3983 | MR

[12] K. Mahler, “An inequality for the discriminant of a polynomial”, Mich. Math. J., 11:3 (1964), 257–262 | DOI | MR | Zbl

[13] M. Mignotte, “Some useful bounds”, Computer Algebra, Springer, 1983, 259–263 | DOI | MR

[14] B. L. van der Waerden, “Die Seltenheit der reduziblen Gleichungen und der Gleichungen mit Affekt”, Monatshefte für Mathematik, 43:1 (1936), 133–147 | DOI | MR | Zbl