Discriminant and root separation of integral polynomials
Zapiski Nauchnykh Seminarov POMI, Probability and statistics. Part 22, Tome 441 (2015), pp. 144-153

Voir la notice de l'article provenant de la source Math-Net.Ru

Consider a random polynomial $$ G_Q(x)=\xi_{Q,n}x^n+\xi_{Q,n-1}x^{n-1}+\dots+\xi_{Q,0} $$ with independent coefficients uniformly distributed on $2Q+1$ integer points $\{-Q,\dots,Q\}$. Denote by $D(G_Q)$ the discriminant of $G_Q$. We show that there exists a constant $C_n$, depending on $n$ only such that for all $Q\ge2$ the distribution of $D(G_Q)$ can be approximated as follows $$ \sup_{-\infty\leq a\leq b\leq\infty}\left|\mathbf P\left(a\leq\frac{D(G_Q)}{Q^{2n-2}}\leq b\right)-\int_a^b\varphi_n(x)\,dx\right|\leq\frac{C_n}{\log Q}, $$ where $\varphi_n$ denotes the probability density function of the discriminant of a random polynomial of degree $n$ with independent coefficients which are uniformly distributed on $[-1,1]$. Let $\Delta(G_Q)$ denote the minimal distance between the complex roots of $G_Q$. As an application we show that for any $\varepsilon>0$ there exists a constant $\delta_n>0$ such that $\Delta(G_Q)$ is stochastically bounded from below/above for all sufficiently large $Q$ in the following sense $$ \mathbf P\left(\delta_n\Delta(G_Q)\frac1{\delta_n}\right)>1-\varepsilon. $$
@article{ZNSL_2015_441_a8,
     author = {F. G\"otze and D. Zaporozhets},
     title = {Discriminant and root separation of integral polynomials},
     journal = {Zapiski Nauchnykh Seminarov POMI},
     pages = {144--153},
     publisher = {mathdoc},
     volume = {441},
     year = {2015},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/ZNSL_2015_441_a8/}
}
TY  - JOUR
AU  - F. Götze
AU  - D. Zaporozhets
TI  - Discriminant and root separation of integral polynomials
JO  - Zapiski Nauchnykh Seminarov POMI
PY  - 2015
SP  - 144
EP  - 153
VL  - 441
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/ZNSL_2015_441_a8/
LA  - en
ID  - ZNSL_2015_441_a8
ER  - 
%0 Journal Article
%A F. Götze
%A D. Zaporozhets
%T Discriminant and root separation of integral polynomials
%J Zapiski Nauchnykh Seminarov POMI
%D 2015
%P 144-153
%V 441
%I mathdoc
%U http://geodesic.mathdoc.fr/item/ZNSL_2015_441_a8/
%G en
%F ZNSL_2015_441_a8
F. Götze; D. Zaporozhets. Discriminant and root separation of integral polynomials. Zapiski Nauchnykh Seminarov POMI, Probability and statistics. Part 22, Tome 441 (2015), pp. 144-153. http://geodesic.mathdoc.fr/item/ZNSL_2015_441_a8/