On the classification problem of measurable functions in several variables and on matrix distributions
Zapiski Nauchnykh Seminarov POMI, Probability and statistics. Part 22, Tome 441 (2015), pp. 119-143

Voir la notice de l'article provenant de la source Math-Net.Ru

We resume the results from [12] on the classification of measurable functions in several variables, with some minor corrections of purely technical nature. We give a partial solution of he characterization problem of so-called matrix distributions, which are the metric invariants of measurable functions introduced in [12]. Matrix distibutions considered as $\S_\mathbb N\times\S_\mathbb N$-invariant, ergodic measures on the space of matrices – this fact connects our problem with Aldous' and Hoover's theorem [2,6].
@article{ZNSL_2015_441_a7,
     author = {A. M. Vershik and U. Hab\"ock},
     title = {On the classification problem of measurable functions in several variables and on matrix distributions},
     journal = {Zapiski Nauchnykh Seminarov POMI},
     pages = {119--143},
     publisher = {mathdoc},
     volume = {441},
     year = {2015},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/ZNSL_2015_441_a7/}
}
TY  - JOUR
AU  - A. M. Vershik
AU  - U. Haböck
TI  - On the classification problem of measurable functions in several variables and on matrix distributions
JO  - Zapiski Nauchnykh Seminarov POMI
PY  - 2015
SP  - 119
EP  - 143
VL  - 441
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/ZNSL_2015_441_a7/
LA  - en
ID  - ZNSL_2015_441_a7
ER  - 
%0 Journal Article
%A A. M. Vershik
%A U. Haböck
%T On the classification problem of measurable functions in several variables and on matrix distributions
%J Zapiski Nauchnykh Seminarov POMI
%D 2015
%P 119-143
%V 441
%I mathdoc
%U http://geodesic.mathdoc.fr/item/ZNSL_2015_441_a7/
%G en
%F ZNSL_2015_441_a7
A. M. Vershik; U. Haböck. On the classification problem of measurable functions in several variables and on matrix distributions. Zapiski Nauchnykh Seminarov POMI, Probability and statistics. Part 22, Tome 441 (2015), pp. 119-143. http://geodesic.mathdoc.fr/item/ZNSL_2015_441_a7/