, using properties of $p$-stable processes. Finally we consider Kakutani–Rochlin's lemma, one of the most frequently used tool in ergodic theory, by stating and proving a criterion for a.e. divergence of weighted ergodic averages.
@article{ZNSL_2015_441_a6,
author = {M. J. G. Weber},
title = {Criteria of divergence almost everywhere in ergodic theory},
journal = {Zapiski Nauchnykh Seminarov POMI},
pages = {73--118},
year = {2015},
volume = {441},
language = {en},
url = {http://geodesic.mathdoc.fr/item/ZNSL_2015_441_a6/}
}
M. J. G. Weber. Criteria of divergence almost everywhere in ergodic theory. Zapiski Nauchnykh Seminarov POMI, Probability and statistics. Part 22, Tome 441 (2015), pp. 73-118. http://geodesic.mathdoc.fr/item/ZNSL_2015_441_a6/
[1] J. Bourgain, “Problems of almost everywhere convergence related to harmonic analysis and number theory”, Israel J. Math., 71 (1990), 97–127 | DOI | MR | Zbl
[2] J. Bourgain, “Almost sure convergence and bounded entropy”, Israel J. Math., 63 (1988), 79–95 | DOI | MR
[3] J. Bourgain, “An approach to pointwise ergodic theorems”, Geometric aspects of functional analysis (1986/87), Lecture Notes in Math., 1317, Springer, Berlin, 1988, 204–223 | DOI | MR
[4] A. Bellow, R. Jones, “A Banach principle for $L^\infty$”, Adv. Math., 120 (1996), 155–172 | DOI | MR | Zbl
[5] D. L. Burkholder, “Maximal inequalities as necessary conditions for almost everywhere convergence”, Z. Wahrscheinlichkeitsth. Verw. Geb., 3 (1964), 75–88 | DOI | MR | Zbl
[6] I. Berkes, M. Weber, “On series $\sum c_k f(kx)$ and Khinchin's conjecture”, Israel J. Math., 201:2 (2014), 593–609 | DOI | MR | Zbl
[7] Y. Deniel, “On the a.s. Cesàro-$\alpha$ convergence for stationary of orthogonal sequences”, J. Theoret. Probab., 2 (1989), 475–485 | DOI | MR | Zbl
[8] R. M. Dudley, “Sample functions of the Gaussian process”, Ann. Probab., 1:1 (1973), 66–103 | DOI | MR | Zbl
[9] R. M. Dudley, “The size of compact subsets of Hilbert space and continuity of Gaussian processes”, J. Funct. Anal., 1 (1967), 290–330 | DOI | MR | Zbl
[10] A. Garsia, Topics in Almost Everywhere Convergence, Markham Publ. Co., Chicago, 1970 | MR | Zbl
[11] A. Ya. Helemskiĭ, G. M. Henkin, “Embeddings of compacta into ellipsoids”, Vestnik Moskov. Univ. Ser. I. Matem. Mekhan., 1963, no. 2, 3–12 (in Russian) | MR
[12] A. N. Kolmogorov, “Asymptotic characteristics of some completely bounded metric spaces”, Dokl. Akad. Nauk SSSR, 108 (1956), 585–589 (in Russian) | MR
[13] A. N. Kolmogorov, “Sur les fonctions harmoniques conjuguées et les séries de Fourier”, Fund. Math., 7 (1925), 23–28
[14] A. N. Kolmogorov, “Une série de Fourier–Lebesgue divergente presque partout”, Fund. Math., 4 (1923), 324–328
[15] A. N. Kolmogorov, “Une série de Fourier–Lebesgue divergente presque partout”, C. R. Acad. Sci. Paris Sér. I, Math., 183 (1926), 1327–1329
[16] Amer. Math. Soc. Transl., 17 (1961), 277–364 | MR | MR | Zbl | Zbl
[17] M. T. Lacey, “Carleson's theorem, proof, complements, variations”, Publ. Math., 48 (2004), 251–307 | DOI | MR | Zbl
[18] M. T. Lacey, “The return time theorem fails on infinite measure preserving systems”, Ann. Inst. Henri Poincaré, 33:4 (1997), 491–495 | DOI | MR | Zbl
[19] J. Lamperti, “On the isometries of certain function-spaces”, Pacific J. Math., 8 (1958), 459–466 | DOI | MR | Zbl
[20] E. Lesigne, “On the sequence of integer parts of a good sequence for the ergodic theorem”, Comment. Math. Univ. Carolin., 36 (1995), 737–743 | MR | Zbl
[21] M. Lifshits, M. Weber, “Oscillations of the Gaussian Stein's elements”, High dimensional probability (Oberwolfach, 1996), Progr. Probab., 43, Birkhaüser, Basel, 1998, 249–261 | MR | Zbl
[22] M. Lifshits, M. Weber, “Tightness of stochastic families arising from randomization procedure”, Asymptotic methods in probability and statistics with applications (St. Petersburg, 1998), Stat. Ind. Technol., Birkhäuser, Boston, 2001, 143–158 | MR
[23] G. G. Lorentz, “Metric entropy and approximation”, Bull. Amer. Math. Soc., 72 (1966), 903–937 | DOI | MR | Zbl
[24] M. Marcus, G. Pisier, “Characterizations of almost surely $p$-stable random Fourier series and strongly continuous stationary processes”, Acta Math., 152 (1984), 245–301 | DOI | MR | Zbl
[25] R. A. Raimi, “Compact transformations and the $k$-topology in Hilbert space”, Proc. Amer. Math. Soc., 6 (1955), 643–646 | MR | Zbl
[26] J. M. Rosenblatt, M. Wierdl, “Pointwise Ergodic Theorems via Harmonic Analysis”, Proceedings of the Conference on Ergodic Theory and its Connections with Harmonic Analysis, Cambridge University Press, Alexandria, Egypt, 1994, 3–151 | MR
[27] S. Sawyer, “Maximal inequalities of weak type”, Ann. Math. (2), 84 (1966), 157–174 | DOI | MR | Zbl
[28] D. Schneider, M. Weber, “Une remarque sur un théorème de Bourgain”, Séminaire de Probabilités, XXVII, Lecture Notes in Math., 1557, Springer, Berlin, 1993, 202–206 | DOI | MR | Zbl
[29] E. M. Stein, “On limits of sequences of operators”, Ann. of Math., 74 (1961), 140–170 | DOI | MR | Zbl
[30] M. Talagrand, Upper and Lower Bounds for Stochastic Processes, Erg. der Math. und ihrer Grenzgeb., 60, Springer, Berlin–Heidelberg, 2014 | MR | Zbl
[31] M. Talagrand, “Applying a theorem of Fernique”, Ann. Inst. H. Poincaré, 32 (1996), 779–799 | MR | Zbl
[32] M. Weber, Dynamical Systems and Processes, IRMA Lectures in Math. and Theor. Physics, 14, Eur. Math. Soc. Pub. House, 2009 | MR | Zbl
[33] M. Weber, Entropie métrique et convergence presque partout, Travaux en Cours, 58, Hermann, Paris, 1998 | MR
[34] M. Weber, “Entropy numbers in $L^p$-spaces for averages of rotations”, J. Math. Kyoto Univ., 37:4 (1997), 689–700 | MR | Zbl
[35] M. Weber, “The Stein randomization procedure”, Rendiconti Math., Ser. VII, 16 (1996), 569–605 | MR
[36] M. Weber, “Coupling of the GB set property for ergodic averages”, J. Theoret. Probab., 9:1 (1996), 105–112 | DOI | MR | Zbl
[37] M. Weber, “GB and GC sets in ergodic theory”, Probability in Banach spaces 9 (Sandjberg, 1993), Progr. Probab., 35, Birkhäuser Boston, Boston, MA, 1994, 129–151 | MR | Zbl
[38] M. Weber, “Opérateurs réguliers sur les espaces $L^p$”, Séminaire de probabilités, XXVII, Lectures Notes in Math., 1557, Springer, 1993, 207–215 | DOI | MR | Zbl