@article{ZNSL_2015_441_a5,
author = {R. C. Bradley},
title = {On mixing properties of some {INAR} models},
journal = {Zapiski Nauchnykh Seminarov POMI},
pages = {56--72},
year = {2015},
volume = {441},
language = {en},
url = {http://geodesic.mathdoc.fr/item/ZNSL_2015_441_a5/}
}
R. C. Bradley. On mixing properties of some INAR models. Zapiski Nauchnykh Seminarov POMI, Probability and statistics. Part 22, Tome 441 (2015), pp. 56-72. http://geodesic.mathdoc.fr/item/ZNSL_2015_441_a5/
[1] R. C. Bradley, “Every ‘lower psi-mixing’ Markov chain is ‘interlaced rho-mixing’ ”, Stochastic Process. Appl., 72 (1997), 221–239 | DOI | MR | Zbl
[2] R. C. Bradley, “A stationary rho-mixing Markov chain which is not “interlaced” rho-mixing”, J. Theor. Probab., 14 (2001), 717–727 | DOI | MR | Zbl
[3] R. C. Bradley, Introduction to Strong Mixing Conditions, v. 1, Kendrick Press, Heber City, Utah, 2007
[4] R. C. Bradley, “On mixing properties of reversible Markov chains”, New Zealand J. Math. (to appear); 19 Mar. 2014, arXiv: 1403.4895v1[math.PR]
[5] R. C. Bradley, W. Bryc, “Multilinear forms and measures of dependence between random varialbes”, J. Multivariate Anal., 16 (1985), 335–367 | DOI | MR | Zbl
[6] A. V. Bulinskii, “On mixing conditions of random fields”, Theor. Probab. Appl., 30 (1986), 207–208 | DOI
[7] P. Csáki, J. Fischer, “On the general notion of maximal correlation”, Magyar Tud. Akad. Mat. Kutató Int. Közl., 8 (1963), 27–51 | MR | Zbl
[8] J. G. Du, Y. Li, “The integer-valued autoregressive ($\mathrm{INAR}(p)$) model”, J. Time Series Anal., 12 (1991), 129–142 | DOI | MR | Zbl
[9] H. O. Hirschfeld, “A connection between correlation and contingency”, Proc. Camb. Phil. Soc., 31 (1935), 520–524 | DOI | Zbl
[10] I. A. Ibragimov, “A note on the central limit theorem for dependent random variables”, Theor. Probab. Appl., 20 (1975), 135–141 | DOI | MR | Zbl
[11] A. N. Kolmogorov, Y. A. Rozanov, “On strong mixing conditions for stationary Gaussian processes”, Theor. Probab. Appl., 5 (1960), 204–208 | DOI
[12] E. McKenzie, “Some simple models for discrete variate time series”, Water Resour. Bull., 21 (1985), 645–650 | DOI
[13] R. A. Olshen, “The coincidence of measure algebras under an exchangeable probability”, Z. Wahrsch. verw. Gebiete, 18 (1971), 153–158 | DOI | MR | Zbl
[14] X. Pedeli, D. Karlis, “Some properties of multivariate INAR(1) processes”, Comput. Statist. Data Anal., 67 (2013), 213–225 | DOI | MR
[15] R. Peyre, “Sharp equivalence between $\rho$- and $\tau$-mixing coefficients”, Studia Math., 216 (2013), 245–270 | DOI | MR | Zbl
[16] M. Rosenblatt, Markov Processes. Structure and Asymptotic Behavior, Springer-Verlag, Berlin, 1971 | MR | Zbl
[17] S. Schweer, C. H. Weiß, “Compound Poisson INAR(1) processes: Stochastic properties and testing for overdispersion”, Comput. Statist. Data Anal., 77 (2014), 267–284 | DOI | MR
[18] I. Silva, M. E. Silva, “Parameter estimation for INAR processes based on high-order statistics”, REVSTAT, 7 (2009), 105–117 | MR | Zbl
[19] C. Stein, “A bound for the error in the normal approximation to the distribution of a sum of dependent random variables”, Proceedings of the Sixth Berkeley Symposium on Probability and Statistics, v. 2, University of California Press, Los Angeles, 1972, 583–602 | MR | Zbl
[20] H. S. Witsenhausen, “On sequences of pairs of dependent random variables”, SIAM J. Appl. Math., 28 (1975), 100–113 | DOI | MR | Zbl