@article{ZNSL_2015_441_a3,
author = {S. Albeverio and B. K. Driver and M. Gordina and A. M. Vershik},
title = {Equivalence of the {Brownian} and energy representations},
journal = {Zapiski Nauchnykh Seminarov POMI},
pages = {17--44},
year = {2015},
volume = {441},
language = {en},
url = {http://geodesic.mathdoc.fr/item/ZNSL_2015_441_a3/}
}
TY - JOUR AU - S. Albeverio AU - B. K. Driver AU - M. Gordina AU - A. M. Vershik TI - Equivalence of the Brownian and energy representations JO - Zapiski Nauchnykh Seminarov POMI PY - 2015 SP - 17 EP - 44 VL - 441 UR - http://geodesic.mathdoc.fr/item/ZNSL_2015_441_a3/ LA - en ID - ZNSL_2015_441_a3 ER -
S. Albeverio; B. K. Driver; M. Gordina; A. M. Vershik. Equivalence of the Brownian and energy representations. Zapiski Nauchnykh Seminarov POMI, Probability and statistics. Part 22, Tome 441 (2015), pp. 17-44. http://geodesic.mathdoc.fr/item/ZNSL_2015_441_a3/
[1] S. Albeverio, R. Høegh-Krohn, D. Testard, A. Vershik, “Factorial representations of path groups”, J. Funct. Anal., 51:1 (1983), 115–131 | DOI | MR | Zbl
[2] S. Albeverio, R. Høegh-Krohn, D. Testard, A. Vershik, “Note: ‘Factorial representations of path groups’”, J. Funct. Anal., 52:1 (1983), 148 | DOI | MR
[3] S. S. Albeverio, R. Høegh-Krohn, “The energy representation of Sobolev–Lie groups”, Compositio Math., 36:1 (1978), 37–51 | MR | Zbl
[4] S. Albeverio, R. Høegh-Krohn, J. A. Marion, D. H. Testard, B. S. Torrésani, Noncommutative distributions, Monographs and Textbooks in Pure and Applied Mathematics, 175, Marcel Dekker Inc., New York, 1993 | MR | Zbl
[5] V. I. Bogachev, Gaussian measures, Mathematical Surveys and Monographs, 62, American Mathematical Society, Providence, RI, 1998 | DOI | MR | Zbl
[6] Bruce K. Driver, “A Cameron–Martin type quasi-invariance theorem for Brownian motion on a compact Riemannian manifold”, J. Funct. Anal., 110:2 (1992), 272–376 | DOI | MR | Zbl
[7] Bruce K. Driver, “A Cameron–Martin type quasi-invariance theorem for pinned Brownian motion on a compact Riemannian manifold”, Trans. Amer. Math. Soc., 342:1 (1994), 375–395 | DOI | MR | Zbl
[8] Bruce K. Driver, “Towards calculus and geometry on path spaces”, Stochastic analysis (Ithaca, NY, 1993), Proc. Sympos. Pure Math., 57, Amer. Math. Soc., Providence, RI, 1995, 405–422 | MR | Zbl
[9] Bruce K. Driver, Brian C. Hall, “The energy representation has no non-zero fixed vectors”, Stochastic processes, physics and geometry: new interplays (Leipzig, 1999), v. II, CMS Conf. Proc., 29, Amer. Math. Soc., Providence, RI, 2000, 143–155 | MR | Zbl
[10] Gerald B. Folland, A course in abstract harmonic analysis, Studies in Advanced Mathematics, CRC Press, Boca Raton, FL, 1995 | MR | Zbl
[11] I. M. Gel'fand, M. I. Graev, A. M. Veršik, “Representations of the group of smooth mappings of a manifold $X$ into a compact Lie group”, Compositio Math., 35:3 (1977), 299–334 | MR | Zbl
[12] I. M. Gel'fand, M. I. Graev, A. M. Veršik, “Representations of the group of functions taking values in a compact Lie group”, Compositio Math., 42:2 (1980/81), 217–243 | MR | Zbl
[13] M. Gordina, “Taylor map on groups associated with a $\mathrm{II}_1$-factor”, Infin. Dimens. Anal. Quantum Probab. Relat. Top., 5:1 (2002), 93–111 | DOI | MR | Zbl
[14] M. Gordina, “Stochastic differential equations on noncommutative $L^2$”, Finite and infinite dimensional analysis in honor of Leonard Gross (New Orleans, LA, 2001), Contemp. Math., 317, Amer. Math. Soc., Providence, RI, 2003, 87–98 | DOI | MR | Zbl
[15] L. Gross, “Uniqueness of ground states for Schrödinger operators over loop groups”, J. Funct. Anal., 112:2 (1993), 373–441 | DOI | MR | Zbl
[16] A. Guichardet, Symmetric Hilbert spaces and related topics. Infinitely divisible positive definite functions. Continuous products and tensor products. Gaussian and Poissonian stochastic processes, Lecture Notes in Mathematics, 261, Springer-Verlag, Berlin, 1972 | MR | Zbl
[17] Brian C. Hall, Ambar N. Sengupta, “The Segal–Bargmann transform for path-groups”, J. Funct. Anal., 152:1 (1998), 220–254 | DOI | MR | Zbl
[18] T. Hida, Brownian motion, Applications of Mathematics, 11, Springer-Verlag, New York, 1980, Translated from the Japanese by the author and T. P. Speed | MR | Zbl
[19] Richard V. Kadison, John R. Ringrose, Fundamentals of the theory of operator algebras, v. II, Pure and Applied Mathematics, 100, Advanced theory, Academic Press Inc., Orlando, FL, 1986 | MR | Zbl
[20] M.-P. Malliavin, P. Malliavin, “Integration on loop groups. I. Quasi invariant measures”, J. Funct. Anal., 93:1 (1990), 207–237 | DOI | MR | Zbl
[21] J. Marion, “Wiener functionals on spaces of Lie algebra valued $1$-currents, and unitary representations of current groups”, Publ. Mat., 33:1 (1989), 99–121 | DOI | MR | Zbl
[22] Derek W. Robinson, Elliptic operators and Lie groups, Oxford Mathematical Monographs, Oxford Science Publications, The Clarendon Press, Oxford University Press, New York, 1991 | MR | Zbl
[23] I. E. Segal, “The two-sided regular representation of a unimodular locally compact group”, Ann. of Math. (2), 51 (1950), 293–298 | DOI | MR | Zbl
[24] Ichirō Shigekawa, “Transformations of the Brownian motion on a Riemannian symmetric space”, Z. Wahrsch. Verw. Gebiete, 65:4 (1984), 493–522 | DOI | MR
[25] Daniel W. Stroock, S. R. Srinivasa Varadhan, Multidimensional diffusion processes, Classics in Mathematics, Springer-Verlag, Berlin, 2006, Reprint of the 1997 edition | MR | Zbl
[26] V. S. Sunder, An invitation to von Neumann algebras, Universitext, Springer-Verlag, New York, 1987 | DOI | MR | Zbl
[27] D. Testard, “Representations of the group of equivariant loops in $\mathrm{SU}(N)$”, Stochastic processes-mathematics and physics (Bielefeld, 1985), v. II, Lecture Notes in Math., 1250, Springer, Berlin, 1987, 326–341 | DOI | MR
[28] Nolan R. Wallach, “On the irreducibility and inequivalence of unitary representations of gauge groups”, Compositio Math., 64:1 (1987), 3–29 | MR | Zbl