@article{ZNSL_2015_441_a18,
author = {M. Hinz and A. Teplyaev},
title = {Closability, regularity, and approximation by graphs for separable bilinear forms},
journal = {Zapiski Nauchnykh Seminarov POMI},
pages = {299--317},
year = {2015},
volume = {441},
language = {en},
url = {http://geodesic.mathdoc.fr/item/ZNSL_2015_441_a18/}
}
M. Hinz; A. Teplyaev. Closability, regularity, and approximation by graphs for separable bilinear forms. Zapiski Nauchnykh Seminarov POMI, Probability and statistics. Part 22, Tome 441 (2015), pp. 299-317. http://geodesic.mathdoc.fr/item/ZNSL_2015_441_a18/
[1] G. Allain, “Sur la représentation des formes de Dirichlet”, Ann. Inst. Fourier, 25 (1975), 1–10 | DOI | MR | Zbl
[2] J. Ambjørn, J. Jurkiwicz, R. Loll, “Spectral Dimension of the Universe”, Phys. Rev. Lett., 95 (2005), 171301 | DOI
[3] L.-E. Andersson, “On the representation of Dirichlet forms”, Ann. Inst. Fourier, 25:3–4 (1975), 11–25 | DOI | MR | Zbl
[4] M. T. Barlow, R. F. Bass, T. Kumagai, A. Teplyaev, “Uniqueness of Brownian motion on Sierpinski carpets”, J. Eur. Math. Soc., 12 (2010), 655–701 | MR | Zbl
[5] B. Blackadar, Operator Algebras: Theory of $C^\ast$-Algebras and von Neumann Algebras, Encyclopedia Math. Sciences, 122, Springer, New York, 2006 | DOI | MR | Zbl
[6] N. Bouleau, F. Hirsch, Dirichlet Forms and Analysis on Wiener Space, de Gruyter Studies in Math., 14, de Gruyter, Berlin, 1991 | MR | Zbl
[7] N. Bourbaki, General Topology, Springer, Berlin, 1966
[8] F. Cipriani, “Dirichlet forms as Banach algebras and applications”, Pac. J. Math., 223:2 (2006), 229–249 | DOI | MR | Zbl
[9] Z.-Q. Chen, M. Fukushima, Symmetric Markov processes, time change, and boundary theory, London Mathematical Society Monographs Series, 35, Princeton University Press, Princeton, NJ, 2012 | MR | Zbl
[10] F. Englert, J.-M. Frere, M. Rooman, Ph. Spindel, “Metric space-time as fixed point of the renormalization group equations on fractal structures”, Nuclear Physics B, 280 (1987), 147–180 | DOI | MR
[11] M. Fukushima, Y. Oshima, M. Takeda, Dirichlet forms and symmetric Markov processes, de Gruyter, Berlin–New York, 1994 | MR | Zbl
[12] M. I. Gordin, “The central limit theorem for stationary processes”, Dokl. Akad. Nauk SSSR, 188 (1969), 739–741 | MR | Zbl
[13] M. I. Gordin, M. Peligrad, “On the functional central limit theorem via martingale approximation”, Bernoulli, 17 (2011), 424–440 | DOI | MR | Zbl
[14] M. Hinz, “Sup-norm-closable bilinear forms and Lagrangians”, Ann. Mat. Pura Appl. (to appear)
[15] M. Hinz, D. Kelleher, A. Teplyaev, “Measures and Dirichlet forms under the Gelfand transform”, Zap. Nauchn. Semin. POMI, 408, 2012, 303–322 | MR
[16] M. Hinz, M. Röckner, A. Teplyaev, “Vector analysis for Dirichlet forms and quasilinear PDE and SPDE on fractals”, Stochastic Process. Appl., 123 (2013), 4373–4406 | DOI | MR | Zbl
[17] M. Hinz, A. Teplyaev, “Dirac and magnetic Schrödinger operators on fractals”, J. Funct. Anal., 265 (2013), 2830–2854 | DOI | MR | Zbl
[18] M. Hinz, A. Teplyaev, “Local Dirichlet forms, Hodge theory, and the Navier-Stokes equations on topologically one-dimensional fractals”, Trans. Amer. Math. Soc., 367 (2015), 1347–1380 | DOI | MR | Zbl
[19] E. Kaniuth, A Course in Commutative Banach Algebras, Springer, New York, 2009 | MR | Zbl
[20] T. Kato, Perturbation Theory for Linear Operators, Springer, Berlin, 1976 | MR | Zbl
[21] J. Kigami, Analysis on Fractals, Cambridge Univ. Press, Cambridge, 2001 | MR | Zbl
[22] S. Kusuoka, X. Y. Zhou, “Dirichlet forms on fractals: Poincaré constant and resistance”, Probab. Theory Related Fields, 93 (1992), 169–196 | DOI | MR | Zbl
[23] Z.-M. Ma, M. Röckner, Introduction to the Theory of Non-Symmetric Dirichlet Forms, Universitext, Springer, Berlin, 1992 | MR | Zbl
[24] G. Mokobodzki, “Fermeabilité des formes du Dirichlet et inégalité de type Poincaré”, Pot. Anal., 4 (1995), 409–413 | DOI | MR | Zbl
[25] U. Mosco, “Composite media and asymptotic Dirichlet forms”, J. Funct. Analysis, 123 (1994), 368–421 | DOI | MR | Zbl
[26] V. Nekrashevich, Self-similar groups, Mathematical Surveys and Monographs, 117, AMS, 2005 | DOI | MR
[27] V. Nekrashevych, A. Teplyaev, “Groups and analysis on fractals”, Proceedings of Symposia in Pure Mathematics, 77, AMS, 2008, 143–182 | DOI | MR
[28] M. Reed, B. Simon, Methods of Modern Mathematical Physics, v. 1, Acad. Press, San Diego, 1980 | MR | Zbl
[29] M. Reuter, F. Saueressig, “Fractal space-times under the microscope: a renormalization group view on Monte Carlo data”, J. High Energy Physics, 12 (2011), 012 | DOI | Zbl
[30] R. S. Strichartz, Differential equations on fractals: a tutorial, Princeton University Press, 2006 | MR | Zbl