Closability, regularity, and approximation by graphs for separable bilinear forms
Zapiski Nauchnykh Seminarov POMI, Probability and statistics. Part 22, Tome 441 (2015), pp. 299-317

Voir la notice de l'article provenant de la source Math-Net.Ru

We consider a countably generated and uniformly closed algebra of bounded functions. We assume that there is a lower semicontinuous, with respect to the supremum norm, quadratic form and that normal contractions operate in a certain sense. Then we prove that a subspace of the effective domain of the quadratic form is naturally isomorphic to a core of a regular Dirichlet form on a locally compact separable metric space. We also show that any Dirichlet form on a countably generated measure space can be approximated by essentially discrete Dirichlet forms, i.e. energy forms on finite weighted graphs, in the sense of Mosco convergence, i.e. strong resolvent convergence.
@article{ZNSL_2015_441_a18,
     author = {M. Hinz and A. Teplyaev},
     title = {Closability, regularity, and approximation by graphs for separable bilinear forms},
     journal = {Zapiski Nauchnykh Seminarov POMI},
     pages = {299--317},
     publisher = {mathdoc},
     volume = {441},
     year = {2015},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/ZNSL_2015_441_a18/}
}
TY  - JOUR
AU  - M. Hinz
AU  - A. Teplyaev
TI  - Closability, regularity, and approximation by graphs for separable bilinear forms
JO  - Zapiski Nauchnykh Seminarov POMI
PY  - 2015
SP  - 299
EP  - 317
VL  - 441
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/ZNSL_2015_441_a18/
LA  - en
ID  - ZNSL_2015_441_a18
ER  - 
%0 Journal Article
%A M. Hinz
%A A. Teplyaev
%T Closability, regularity, and approximation by graphs for separable bilinear forms
%J Zapiski Nauchnykh Seminarov POMI
%D 2015
%P 299-317
%V 441
%I mathdoc
%U http://geodesic.mathdoc.fr/item/ZNSL_2015_441_a18/
%G en
%F ZNSL_2015_441_a18
M. Hinz; A. Teplyaev. Closability, regularity, and approximation by graphs for separable bilinear forms. Zapiski Nauchnykh Seminarov POMI, Probability and statistics. Part 22, Tome 441 (2015), pp. 299-317. http://geodesic.mathdoc.fr/item/ZNSL_2015_441_a18/