@article{ZNSL_2015_441_a16,
author = {M. A. Lifshits and M. Peligrad},
title = {On the spectral density of stationary processes and random fields},
journal = {Zapiski Nauchnykh Seminarov POMI},
pages = {274--285},
year = {2015},
volume = {441},
language = {en},
url = {http://geodesic.mathdoc.fr/item/ZNSL_2015_441_a16/}
}
M. A. Lifshits; M. Peligrad. On the spectral density of stationary processes and random fields. Zapiski Nauchnykh Seminarov POMI, Probability and statistics. Part 22, Tome 441 (2015), pp. 274-285. http://geodesic.mathdoc.fr/item/ZNSL_2015_441_a16/
[1] R. C. Bradley, “Basic properties of strong mixing conditions. A survey and some open questions”, Probab. Surv., 2 (2005), 107–144 | DOI | MR | Zbl
[2] R. C. Bradley, Introduction to Strong Mixing Conditions, v. 1–3, Kendrick Press, Heber City, UT, 2007
[3] P. J. Brockwell, R. A. Davis, Time Series: Theory and Methods, Springer, New York, 1991 | MR | Zbl
[4] A. V. Bulinski, A. N. Shyriaev, Theory of Random Processes, Fizmatlit, Moscow, 2003
[5] L. Carleson, “On convergence and growth of partial sums of Fourier series”, Acta Math., 116 (1966), 135–157 | DOI | MR | Zbl
[6] S. R. S. Varadhan, Probability Theory, Courant Lecture Notes, 7, Amer. Math. Soc., 2001 | MR | Zbl
[7] D. Volný, Y. Wang, “An invariance principle for stationary random fields under Hannan's condition”, Stoch. Proc. Appl., 124 (2014), 4012–4029 | DOI | MR | Zbl