Kolmogorov tests of normality based on some variants of Polya's characterization
Zapiski Nauchnykh Seminarov POMI, Probability and statistics. Part 22, Tome 441 (2015), pp. 263-273 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice du chapitre de livre

Two variants of Kolmogorov-type $U$-empirical tests of normality are studied. They are based on the variants of famous Polya's characterization of the normal law. We calculate their local Bahadur efficiency against location, skew and Lehmann alternatives and find that the integral tests are usually more efficient.
@article{ZNSL_2015_441_a15,
     author = {V. V. Litvinova and Ya. Yu. Nikitin},
     title = {Kolmogorov tests of normality based on some variants of {Polya's} characterization},
     journal = {Zapiski Nauchnykh Seminarov POMI},
     pages = {263--273},
     year = {2015},
     volume = {441},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZNSL_2015_441_a15/}
}
TY  - JOUR
AU  - V. V. Litvinova
AU  - Ya. Yu. Nikitin
TI  - Kolmogorov tests of normality based on some variants of Polya's characterization
JO  - Zapiski Nauchnykh Seminarov POMI
PY  - 2015
SP  - 263
EP  - 273
VL  - 441
UR  - http://geodesic.mathdoc.fr/item/ZNSL_2015_441_a15/
LA  - ru
ID  - ZNSL_2015_441_a15
ER  - 
%0 Journal Article
%A V. V. Litvinova
%A Ya. Yu. Nikitin
%T Kolmogorov tests of normality based on some variants of Polya's characterization
%J Zapiski Nauchnykh Seminarov POMI
%D 2015
%P 263-273
%V 441
%U http://geodesic.mathdoc.fr/item/ZNSL_2015_441_a15/
%G ru
%F ZNSL_2015_441_a15
V. V. Litvinova; Ya. Yu. Nikitin. Kolmogorov tests of normality based on some variants of Polya's characterization. Zapiski Nauchnykh Seminarov POMI, Probability and statistics. Part 22, Tome 441 (2015), pp. 263-273. http://geodesic.mathdoc.fr/item/ZNSL_2015_441_a15/

[1] A. Azzalini, “A class of distributions which includes the normal ones”, Scand. J. Statist., 12 (1985), 171–178 | MR | Zbl

[2] A. Azzalini, The Skew-normal and Related Families, With the collaboration of A. Capitanio, Cambridge University Press, New York, 2014

[3] R. R. Bahadur, Some Limit Theorems in Statistics, SIAM, Philadelphia, 1971 | MR | Zbl

[4] A. Durio, Ya. Yu. Nikitin, “Local asymptotic efficiency of some goodness-of-fit tests under skew alternatives”, J. Statist. Plann. Infer., 115:1 (2003), 171–179 | DOI | MR | Zbl

[5] R. Helmers, P. Janssen, R. Serfling, “Glivenko–Cantelli properties of some generalized empirical DF's and strong convergence of generalized $L$-statistics”, Probab. Theory Relat. Fields, 79 (1988), 75–93 | DOI | MR | Zbl

[6] A. M. Kagan, Yu. V. Linnik, C. R. Rao, Characterization Theorems of Mathematical Statistics, Wiley, New York, 1973 | MR

[7] A. V. Kakosyan, L. B. Klebanov, J. A. Melamed, Characterization of Distributions by the Method of Intensively Monotone Operators, Lecture Notes in Mathematics, 1088, Springer, Berlin, 1984 | MR | Zbl

[8] R. G. Laha, E. Lukacs, “On a linear form whose distribution is identical with that of a monomial”, Pacific J. Math., 15 (1965), 207–214 | DOI | MR | Zbl

[9] V. V. Litvinova, Ya. Yu. Nikitin, “Dva semeistva kriteriev normalnosti, osnovannykh na kharakterizatsii Poia, i ikh asimptoticheskaya effektivnost”, Zap. nauchn. semin. POMI, 328, 2005, 147–159 | MR | Zbl

[10] P. Muliere, Ya. Yu. Nikitin, “Scale-invariant test of normality based on Polya's characterization”, Metron, 60:1–2 (2002), 21–33 | MR | Zbl

[11] Ya. Nikitin, Asymptotic Efficiency of Nonparametric Tests, Cambridge University Press, New York, 1995 | MR | Zbl

[12] Ya. Yu. Nikitin, “Large deviations of $U$-empirical Kolmogorov–Smirnov tests, and their efficiency”, J. Nonparam. Statist., 22 (2010), 649–668 | DOI | MR | Zbl

[13] G. Polya, “Herleitung des Gauss'schen Fehlergesetzes aus einer Funktionalgleichung”, Math. Zeitschrift, 18 (1923), 96–108 | DOI | MR | Zbl