A functional CLT for fields of commuting transformations via martingale approximation
Zapiski Nauchnykh Seminarov POMI, Probability and statistics. Part 22, Tome 441 (2015), pp. 239-262 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice du chapitre de livre

We consider a field $f\circ T^{i_1}_1\circ\dots\circ T_d^{i_d}$, where $T_1,\dots,T_d$ are completely commuting transformations in the sense of Gordin. If one of these transformations is ergodic, we give sufficient conditions in the spirit of Hannan under which the partial sum process indexed by quadrants converges in distribution to a Brownian sheet. The proof combines a martingale approximation approach with a recent CLT for martingale random fields due to Volný. We apply our results to completely commuting endomorphisms of the $m$-torus. In that case, the conditions can be expressed in terms of the $L^2$-modulus of continuity of $f$.
@article{ZNSL_2015_441_a14,
     author = {Ch. Cuny and J. Dedecker and D. Voln\'y},
     title = {A functional {CLT} for fields of commuting transformations via martingale approximation},
     journal = {Zapiski Nauchnykh Seminarov POMI},
     pages = {239--262},
     year = {2015},
     volume = {441},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/ZNSL_2015_441_a14/}
}
TY  - JOUR
AU  - Ch. Cuny
AU  - J. Dedecker
AU  - D. Volný
TI  - A functional CLT for fields of commuting transformations via martingale approximation
JO  - Zapiski Nauchnykh Seminarov POMI
PY  - 2015
SP  - 239
EP  - 262
VL  - 441
UR  - http://geodesic.mathdoc.fr/item/ZNSL_2015_441_a14/
LA  - en
ID  - ZNSL_2015_441_a14
ER  - 
%0 Journal Article
%A Ch. Cuny
%A J. Dedecker
%A D. Volný
%T A functional CLT for fields of commuting transformations via martingale approximation
%J Zapiski Nauchnykh Seminarov POMI
%D 2015
%P 239-262
%V 441
%U http://geodesic.mathdoc.fr/item/ZNSL_2015_441_a14/
%G en
%F ZNSL_2015_441_a14
Ch. Cuny; J. Dedecker; D. Volný. A functional CLT for fields of commuting transformations via martingale approximation. Zapiski Nauchnykh Seminarov POMI, Probability and statistics. Part 22, Tome 441 (2015), pp. 239-262. http://geodesic.mathdoc.fr/item/ZNSL_2015_441_a14/

[1] R. Cairoli, “Une inégalité pour martingales à indices multiples et ses applications”, Séminaire de Probabilités, IV (Univ. Strasbourg, 1968/69), Lecture Notes Math., 124, Springer, Berlin, 1970, 1–27 (French) | DOI | MR

[2] G. Cohen, J.-P. Conze, “CLT for random walks of commuting endomorphisms on compact abelian groups”, J. Theoret. Probab (to appear) | DOI

[3] J.-P. Conze, L. Hervé, A. Raugi, “Pavages auto-affines, opérateurs de transfert et critères de réseau dans $\mathbb R^d$”, Bol. Soc. Brasil. Mat. (N.S.), 28:1 (1997), 1–42 (French) | DOI | MR | Zbl

[4] C. Cuny, “A compact LIL for martingales in $2$-smooth Banach spaces with applications”, Bernoulli, 21:1 (2015), 374–400 | DOI | MR | Zbl

[5] C. Cuny, M. Peligrad, “Central limit theorem started at a point for stationary processes and additive functionals of reversible Markov chains”, J. Theoret. Probab., 25:1 (2012), 171–188 | DOI | MR | Zbl

[6] J. Dedecker, “On the optimality of McLeish's conditions for the central limit theorem”, C. R. Math. Acad. Sci. Paris, 353:6 (2015), 557–561 | DOI | MR | Zbl

[7] A. Fan, Decay of correlation for expanding toral endomorphisms

[8] M. I. Gordin, “The central limit theorem for stationary processes”, Dokl. Akad. Nauk SSSR, 188 (1969), 739–741 (Russian) | MR | Zbl

[9] J. Math. Sci. (N.Y.), 163:4 (2009), 363–374 | DOI | MR | Zbl

[10] M. I. Gordin, B. A. Lifshits, “Central limit theorem for stationary Markov processes”, Dokl. Akad. Nauk SSSR, 239:4 (1978), 766–767 (Russian) | MR | Zbl

[11] M. I. Gordin, M. Peligrad, “On the functional central limit theorem via martingale approximation”, Bernoulli, 17 (2011), 424–440 | DOI | MR | Zbl

[12] P. Hall, C. C. Heyde, Martingale limit theory and its application, Probability and Mathematical Statistics, Academic Press, Inc. [Harcourt Brace Jovanovich, Publishers], New York–London, 1980 | MR | Zbl

[13] E. J. Hannan, “Central limit theorems for time series regression”, Z. Wahrscheinlichkeitstheorie Verw. Geb., 26 (1973), 157–170 | DOI | MR | Zbl

[14] E. J. Hannan, “The central limit theorem for time series regression”, Stochastic Process. Appl., 9 (1979), 281–289 | DOI | MR | Zbl

[15] C. C. Heyde, “On the central limit theorem for stationary processes”, Z. Wahrscheinlichkietstheorie Verw. Geb., 30 (1974), 315–320 | DOI | MR | Zbl

[16] M. B. Levin, “Central limit theorem for Zd+-actions by toral endomorphisms”, Electron. J. Probab., 18:35 (2013), 42 pp. | MR

[17] M. Maxwell, M. Woodroofe, “Central limit theorems for additive functionals of Markov chains”, Ann. Probab., 28 (2000), 713–724 | DOI | MR | Zbl

[18] M. Peligrad, S. Utev, “A new maximal inequality and invariance principle for stationary sequences”, Ann. Probab., 33 (2005), 798–815 | DOI | MR | Zbl

[19] D. Volný, A central limit theorem for fields of martingale differences, arXiv: ; C. R. Math. Acad. Sci. Paris, 353:12 (2015), 1159–1163 1504.02439 | MR

[20] D. Volný, Y. Wang, “An invariance principle for stationary random fields under Hannan's condition”, Stochastic Process. Appl., 124:12 (2014), 4012–4029 | DOI | MR | Zbl

[21] P. Walters, An introduction to ergodic theory, Graduate Texts in Mathematics, 79, Springer, New York–Berlin, 1982 | DOI | MR | Zbl