A functional CLT for fields of commuting transformations via martingale approximation
Zapiski Nauchnykh Seminarov POMI, Probability and statistics. Part 22, Tome 441 (2015), pp. 239-262
Voir la notice de l'article provenant de la source Math-Net.Ru
We consider a field $f\circ T^{i_1}_1\circ\dots\circ T_d^{i_d}$, where $T_1,\dots,T_d$ are completely commuting transformations in the sense of Gordin. If one of these transformations is ergodic, we give sufficient conditions in the spirit of Hannan under which the partial sum process indexed by quadrants converges in distribution to a Brownian sheet. The proof combines a martingale approximation approach with a recent CLT for martingale random fields due to Volný. We apply our results to completely commuting endomorphisms of the $m$-torus. In that case, the conditions can be expressed in terms of the $L^2$-modulus of continuity of $f$.
@article{ZNSL_2015_441_a14,
author = {Ch. Cuny and J. Dedecker and D. Voln\'y},
title = {A functional {CLT} for fields of commuting transformations via martingale approximation},
journal = {Zapiski Nauchnykh Seminarov POMI},
pages = {239--262},
publisher = {mathdoc},
volume = {441},
year = {2015},
language = {en},
url = {http://geodesic.mathdoc.fr/item/ZNSL_2015_441_a14/}
}
TY - JOUR AU - Ch. Cuny AU - J. Dedecker AU - D. Volný TI - A functional CLT for fields of commuting transformations via martingale approximation JO - Zapiski Nauchnykh Seminarov POMI PY - 2015 SP - 239 EP - 262 VL - 441 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/ZNSL_2015_441_a14/ LA - en ID - ZNSL_2015_441_a14 ER -
%0 Journal Article %A Ch. Cuny %A J. Dedecker %A D. Volný %T A functional CLT for fields of commuting transformations via martingale approximation %J Zapiski Nauchnykh Seminarov POMI %D 2015 %P 239-262 %V 441 %I mathdoc %U http://geodesic.mathdoc.fr/item/ZNSL_2015_441_a14/ %G en %F ZNSL_2015_441_a14
Ch. Cuny; J. Dedecker; D. Volný. A functional CLT for fields of commuting transformations via martingale approximation. Zapiski Nauchnykh Seminarov POMI, Probability and statistics. Part 22, Tome 441 (2015), pp. 239-262. http://geodesic.mathdoc.fr/item/ZNSL_2015_441_a14/