@article{ZNSL_2015_441_a14,
author = {Ch. Cuny and J. Dedecker and D. Voln\'y},
title = {A functional {CLT} for fields of commuting transformations via martingale approximation},
journal = {Zapiski Nauchnykh Seminarov POMI},
pages = {239--262},
year = {2015},
volume = {441},
language = {en},
url = {http://geodesic.mathdoc.fr/item/ZNSL_2015_441_a14/}
}
TY - JOUR AU - Ch. Cuny AU - J. Dedecker AU - D. Volný TI - A functional CLT for fields of commuting transformations via martingale approximation JO - Zapiski Nauchnykh Seminarov POMI PY - 2015 SP - 239 EP - 262 VL - 441 UR - http://geodesic.mathdoc.fr/item/ZNSL_2015_441_a14/ LA - en ID - ZNSL_2015_441_a14 ER -
Ch. Cuny; J. Dedecker; D. Volný. A functional CLT for fields of commuting transformations via martingale approximation. Zapiski Nauchnykh Seminarov POMI, Probability and statistics. Part 22, Tome 441 (2015), pp. 239-262. http://geodesic.mathdoc.fr/item/ZNSL_2015_441_a14/
[1] R. Cairoli, “Une inégalité pour martingales à indices multiples et ses applications”, Séminaire de Probabilités, IV (Univ. Strasbourg, 1968/69), Lecture Notes Math., 124, Springer, Berlin, 1970, 1–27 (French) | DOI | MR
[2] G. Cohen, J.-P. Conze, “CLT for random walks of commuting endomorphisms on compact abelian groups”, J. Theoret. Probab (to appear) | DOI
[3] J.-P. Conze, L. Hervé, A. Raugi, “Pavages auto-affines, opérateurs de transfert et critères de réseau dans $\mathbb R^d$”, Bol. Soc. Brasil. Mat. (N.S.), 28:1 (1997), 1–42 (French) | DOI | MR | Zbl
[4] C. Cuny, “A compact LIL for martingales in $2$-smooth Banach spaces with applications”, Bernoulli, 21:1 (2015), 374–400 | DOI | MR | Zbl
[5] C. Cuny, M. Peligrad, “Central limit theorem started at a point for stationary processes and additive functionals of reversible Markov chains”, J. Theoret. Probab., 25:1 (2012), 171–188 | DOI | MR | Zbl
[6] J. Dedecker, “On the optimality of McLeish's conditions for the central limit theorem”, C. R. Math. Acad. Sci. Paris, 353:6 (2015), 557–561 | DOI | MR | Zbl
[7] A. Fan, Decay of correlation for expanding toral endomorphisms
[8] M. I. Gordin, “The central limit theorem for stationary processes”, Dokl. Akad. Nauk SSSR, 188 (1969), 739–741 (Russian) | MR | Zbl
[9] J. Math. Sci. (N.Y.), 163:4 (2009), 363–374 | DOI | MR | Zbl
[10] M. I. Gordin, B. A. Lifshits, “Central limit theorem for stationary Markov processes”, Dokl. Akad. Nauk SSSR, 239:4 (1978), 766–767 (Russian) | MR | Zbl
[11] M. I. Gordin, M. Peligrad, “On the functional central limit theorem via martingale approximation”, Bernoulli, 17 (2011), 424–440 | DOI | MR | Zbl
[12] P. Hall, C. C. Heyde, Martingale limit theory and its application, Probability and Mathematical Statistics, Academic Press, Inc. [Harcourt Brace Jovanovich, Publishers], New York–London, 1980 | MR | Zbl
[13] E. J. Hannan, “Central limit theorems for time series regression”, Z. Wahrscheinlichkeitstheorie Verw. Geb., 26 (1973), 157–170 | DOI | MR | Zbl
[14] E. J. Hannan, “The central limit theorem for time series regression”, Stochastic Process. Appl., 9 (1979), 281–289 | DOI | MR | Zbl
[15] C. C. Heyde, “On the central limit theorem for stationary processes”, Z. Wahrscheinlichkietstheorie Verw. Geb., 30 (1974), 315–320 | DOI | MR | Zbl
[16] M. B. Levin, “Central limit theorem for Zd+-actions by toral endomorphisms”, Electron. J. Probab., 18:35 (2013), 42 pp. | MR
[17] M. Maxwell, M. Woodroofe, “Central limit theorems for additive functionals of Markov chains”, Ann. Probab., 28 (2000), 713–724 | DOI | MR | Zbl
[18] M. Peligrad, S. Utev, “A new maximal inequality and invariance principle for stationary sequences”, Ann. Probab., 33 (2005), 798–815 | DOI | MR | Zbl
[19] D. Volný, A central limit theorem for fields of martingale differences, arXiv: ; C. R. Math. Acad. Sci. Paris, 353:12 (2015), 1159–1163 1504.02439 | MR
[20] D. Volný, Y. Wang, “An invariance principle for stationary random fields under Hannan's condition”, Stochastic Process. Appl., 124:12 (2014), 4012–4029 | DOI | MR | Zbl
[21] P. Walters, An introduction to ergodic theory, Graduate Texts in Mathematics, 79, Springer, New York–Berlin, 1982 | DOI | MR | Zbl