Invariance, quasi-invariance and unimodularity for random graphs
Zapiski Nauchnykh Seminarov POMI, Probability and statistics. Part 22, Tome 441 (2015), pp. 210-238

Voir la notice de l'article provenant de la source Math-Net.Ru

We interpret the probabilistic notion of unimodularity for measures on the space of rooted locally finite connected graphs in terms of the theory of measured equivalence relations. It turns out that the right framework for this consists in considering quasi-invariant (rather than just invariant) measures with respect to the root moving equivalence relation. We define a natural modular cocycle of this equivalence relation, and show that unimodular measures are precisely those quasi-invariant measures whose Radon–Nikodym cocycle coincides with the modular cocycle. This embeds the notion of unimodularity into the very general dynamical scheme of constructing and studying measures with a prescribed Radon–Nikodym cocycle.
@article{ZNSL_2015_441_a13,
     author = {V. A. Kaimanovich},
     title = {Invariance, quasi-invariance and unimodularity for random graphs},
     journal = {Zapiski Nauchnykh Seminarov POMI},
     pages = {210--238},
     publisher = {mathdoc},
     volume = {441},
     year = {2015},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZNSL_2015_441_a13/}
}
TY  - JOUR
AU  - V. A. Kaimanovich
TI  - Invariance, quasi-invariance and unimodularity for random graphs
JO  - Zapiski Nauchnykh Seminarov POMI
PY  - 2015
SP  - 210
EP  - 238
VL  - 441
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/ZNSL_2015_441_a13/
LA  - ru
ID  - ZNSL_2015_441_a13
ER  - 
%0 Journal Article
%A V. A. Kaimanovich
%T Invariance, quasi-invariance and unimodularity for random graphs
%J Zapiski Nauchnykh Seminarov POMI
%D 2015
%P 210-238
%V 441
%I mathdoc
%U http://geodesic.mathdoc.fr/item/ZNSL_2015_441_a13/
%G ru
%F ZNSL_2015_441_a13
V. A. Kaimanovich. Invariance, quasi-invariance and unimodularity for random graphs. Zapiski Nauchnykh Seminarov POMI, Probability and statistics. Part 22, Tome 441 (2015), pp. 210-238. http://geodesic.mathdoc.fr/item/ZNSL_2015_441_a13/