@article{ZNSL_2015_441_a13,
author = {V. A. Kaimanovich},
title = {Invariance, quasi-invariance and unimodularity for random graphs},
journal = {Zapiski Nauchnykh Seminarov POMI},
pages = {210--238},
year = {2015},
volume = {441},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/ZNSL_2015_441_a13/}
}
V. A. Kaimanovich. Invariance, quasi-invariance and unimodularity for random graphs. Zapiski Nauchnykh Seminarov POMI, Probability and statistics. Part 22, Tome 441 (2015), pp. 210-238. http://geodesic.mathdoc.fr/item/ZNSL_2015_441_a13/
[1] D. Aldous, R. Lyons, “Processes on unimodular random networks”, Electron. J. Probab., 12:54 (2007), 1454–1508, (electronic) | MR | Zbl
[2] D. Aldous, J. M. Steele, “The objective method: probabilistic combinatorial optimization and local weak convergence”, Probability on discrete structures, Encyclopaedia Math. Sci., 110, Springer, Berlin, 2004, 1–72 | MR | Zbl
[3] M. Aizenman, S. Warzel, “The canopy graph and level statistics for random operators on trees”, Math. Phys. Anal. Geom., 9:4 (2006), 291–333 (2007) | DOI | MR | Zbl
[4] I. Benjamini, N. Curien, “Ergodic theory on stationary random graphs”, Electron. J. Probab., 17:93 (2012), 20 pp., (electronic) | MR
[5] H. Bass, A. Lubotzky, Tree Lattices, With appendices by H. Bass, L. Carbone, A. Lubotzky, G. Rosenberg and J. Tits, Progress in Mathematics, 176, Birkhäuser Boston, Inc., Boston, MA, 2001 | MR | Zbl
[6] I. Benjamini, R. Lyons, Y. Peres, O. Schramm, “Group-invariant percolation on graphs”, Geom. Funct. Anal., 9:1 (1999), 29–66 | DOI | MR | Zbl
[7] I. Benjamini, R. Lyons, O. Schramm, “Unimodular random trees”, Ergodic Theory Dynam. Systems, 35:2 (2015), 359–373 | DOI | MR | Zbl
[8] R. Bowen, Equilibrium states and the ergodic theory of Anosov diffeomorphisms, Lecture Notes in Mathematics, 470, Springer, Berlin–New York, 1975 | MR | Zbl
[9] I. Benjamini, O. Schramm, “Recurrence of distributional limits of finite planar graphs”, Electron. J. Probab., 6:23 (2001), 13 pp., (electronic) | MR | Zbl
[10] L. Carbone, Non-uniform lattices on uniform trees, Mem. Amer. Math. Soc., 152, no. 724, 2001, xii+127 pp. | MR
[11] D. I. Cartwright, V. A. Kaimanovich, W. Woess, “Random walks on the affine group of local fields and of homogeneous trees”, Ann. Inst. Fourier (Grenoble), 44:4 (1994), 1243–1288 | DOI | MR | Zbl
[12] L. Carbone, G. Rosenberg, “Lattices on nonuniform trees”, Geom. Dedicata, 98 (2003), 161–188 | DOI | MR | Zbl
[13] J. Feldman, C. C. Moore, “Ergodic equivalence relations, cohomology, and von Neumann algebras I”, Trans. Amer. Math. Soc., 234:2 (1977), 289–324 | DOI | MR | Zbl
[14] L. Garnett, “Foliations, the ergodic theorem and Brownian motion”, J. Funct. Anal., 51:3 (1983), 285–311 | DOI | MR | Zbl
[15] O. Häggström, “Infinite clusters in dependent automorphism invariant percolation on trees”, Ann. Probab., 25:3 (1997), 1423–1436 | DOI | MR | Zbl
[16] F. Harary, “Methods of destroying the symmetries of a graph”, Bull. Malays. Math. Sci. Soc. (2), 24:2 (2001), 183–191 (2002) | MR | Zbl
[17] F. Harary D. Ranjan, “Breaking symmetry in complete graphs by orienting edges: asymptotic bounds”, Inform. Process. Lett., 67:5 (1998), 227–230 | DOI | MR
[18] V. A. Kaimanovich, “Brounovskoe dvizhenie na sloeniyakh: entropiya, invariantnye mery, peremeshivanie”, Funkts. analiz i ego pril., 22:4 (1988), 82–83 | MR | Zbl
[19] V. A. Kaimanovich, “Measure-theoretic boundaries of Markov chains, $0$-$2$ laws and entropy”, Harmonic analysis and discrete potential theory (Frascati, 1991), Plenum, New York, 1992, 145–180 | DOI | MR
[20] V. A. Kaimanovich, “Hausdorff dimension of the harmonic measure on trees”, Ergodic Theory Dynam. Systems, 18:3 (1998), 631–660 | DOI | MR | Zbl
[21] V. A. Kaimanovich, “Random walks on Sierpiński graphs: hyperbolicity and stochastic homogenization”, Fractals in Graz 2001, Trends Math., Birkhäuser, Basel, 2003, 145–183 | MR | Zbl
[22] V. A. Kaimanovich, “Amenability and the Liouville property”, Israel J. Math., 149 (2005), 45–85 | DOI | MR | Zbl
[23] V. A. Kaimanovich, “Hopf decomposition and horospheric limit sets”, Ann. Acad. Sci. Fenn. Math., 35:2 (2010), 335–350 | DOI | MR | Zbl
[24] V. A. Kaimanovich, M. Lyubich, Conformal and harmonic measures on laminations associated with rational maps, Mem. Amer. Math. Soc., 173, no. 820, 2005, vi+119 pp. | MR
[25] V. A. Kaimanovich, W. Woess, “Construction of discrete, non-unimodular hypergroups”, Probability measures on groups and related structures, XI (Oberwolfach, 1994), World Sci. Publ., River Edge, NJ, 1995, 196–209 | MR | Zbl
[26] V. A. Kaimanovich, W. Woess, “Boundary and entropy of space homogeneous Markov chains”, Ann. Probab., 30:1 (2002), 323–363 | DOI | MR | Zbl
[27] R. Lyons, R. Pemantle, Yu. Peres, “Ergodic theory on Galton–Watson trees: speed of random walk and dimension of harmonic measure”, Ergodic Theory Dynam. Systems, 15:3 (1995), 593–619 | DOI | MR
[28] J. R. Norris, Markov Chains, Cambridge Series in Statistical and Probabilistic Mathematics, 2, Cambridge University Press, Cambridge, 1998, Reprint of 1997 original | MR | Zbl
[29] F. Paulin, “Propriétés asymptotiques des relations d'équivalences mesurées discrètes”, Markov Process. Related Fields, 5:2 (1999), 163–200 | MR | Zbl
[30] M. Rosenblatt, Markov Processes. Structure and Asymptotic Behavior, Die Grundlehren der mathematischen Wissenschaften, 184, Springer-Verlag, New York, 1971 | MR | Zbl
[31] M. A. Ronan, J. Tits, “Twin trees. II. Local structure and a universal construction”, Israel J. Math., 109 (1999), 349–377 | DOI | MR | Zbl
[32] G. Schlichting, “Polynomidentitäten und Permutationsdarstellungen lokalkompakter Gruppen”, Invent. Math., 55:2 (1979), 97–106 | DOI | MR | Zbl
[33] Ya. G. Sinai, “Gibbsovskie mery v ergodicheskoi teorii”, Uspekhi matem. nauk, 27:4(166) (1972), 21–64 | MR | Zbl
[34] D. Sullivan, “The density at infinity of a discrete group of hyperbolic motions”, Inst. Hautes Études Sci. Publ. Math., 50 (1979), 171–202 | DOI | MR | Zbl
[35] P. M. Soardi, W. Woess, “Amenability, unimodularity, and the spectral radius of random walks on infinite graphs”, Math. Z., 205:3 (1990), 471–486 | DOI | MR | Zbl
[36] V. I. Trofimov, “Gruppy avtomorfizmov grafov kak topologicheskie gruppy”, Matem. zametki, 38:3 (1985), 378–385 | MR | Zbl
[37] W. T. Tutte, “A census of planar triangulations”, Canad. J. Math., 14 (1962), 21–38 | DOI | MR | Zbl
[38] W. T. Tutte, “On the enumeration of convex polyhedra”, J. Combin. Theory Ser. B, 28:2 (1980), 105–126 | DOI | MR | Zbl
[39] W. Woess, “Topological groups and recurrence of quasitransitive graphs”, Rend. Sem. Mat. Fis. Milano, 64 (1994), 185–213 | DOI | MR
[40] W. Woess, Random Walks on Infinite Graphs and Groups, Cambridge Tracts in Mathematics, 138, Cambridge University Press, Cambridge, 2000 | MR | Zbl