Bound for the maximal probability in the Littlewood--Offord problem
Zapiski Nauchnykh Seminarov POMI, Probability and statistics. Part 22, Tome 441 (2015), pp. 204-209

Voir la notice de l'article provenant de la source Math-Net.Ru

The paper deals with studying a connection of the Littlewood–Offord problem with estimating the concentration functions of some symmetric infinitely divisible distributions. It is shown that the values at zero of the concentration functions of weighted sums of i.i.d. random variables may be estimated by the values at zero of the concentration functions of symmetric infinitely divisible distributions with the Lévy spectral measures which are multiples of the sum of delta-measures at $\pm$weights involved in constructing the weighted sums.
@article{ZNSL_2015_441_a12,
     author = {A. Yu. Zaitsev},
     title = {Bound for the maximal probability in the {Littlewood--Offord} problem},
     journal = {Zapiski Nauchnykh Seminarov POMI},
     pages = {204--209},
     publisher = {mathdoc},
     volume = {441},
     year = {2015},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZNSL_2015_441_a12/}
}
TY  - JOUR
AU  - A. Yu. Zaitsev
TI  - Bound for the maximal probability in the Littlewood--Offord problem
JO  - Zapiski Nauchnykh Seminarov POMI
PY  - 2015
SP  - 204
EP  - 209
VL  - 441
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/ZNSL_2015_441_a12/
LA  - ru
ID  - ZNSL_2015_441_a12
ER  - 
%0 Journal Article
%A A. Yu. Zaitsev
%T Bound for the maximal probability in the Littlewood--Offord problem
%J Zapiski Nauchnykh Seminarov POMI
%D 2015
%P 204-209
%V 441
%I mathdoc
%U http://geodesic.mathdoc.fr/item/ZNSL_2015_441_a12/
%G ru
%F ZNSL_2015_441_a12
A. Yu. Zaitsev. Bound for the maximal probability in the Littlewood--Offord problem. Zapiski Nauchnykh Seminarov POMI, Probability and statistics. Part 22, Tome 441 (2015), pp. 204-209. http://geodesic.mathdoc.fr/item/ZNSL_2015_441_a12/