@article{ZNSL_2015_441_a12,
author = {A. Yu. Zaitsev},
title = {Bound for the maximal probability in the {Littlewood{\textendash}Offord} problem},
journal = {Zapiski Nauchnykh Seminarov POMI},
pages = {204--209},
year = {2015},
volume = {441},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/ZNSL_2015_441_a12/}
}
A. Yu. Zaitsev. Bound for the maximal probability in the Littlewood–Offord problem. Zapiski Nauchnykh Seminarov POMI, Probability and statistics. Part 22, Tome 441 (2015), pp. 204-209. http://geodesic.mathdoc.fr/item/ZNSL_2015_441_a12/
[1] T. V. Arak, “O sblizhenii $n$-kratnykh svertok raspredelenii, imeyuschikh neotritsatelnuyu kharakteristicheskuyu funktsiyu, s soprovozhdayuschimi zakonami”, Teoriya veroyatn. i ee primen., 25:2 (1980), 225–246 | MR | Zbl
[2] T. V. Arak, “O skorosti skhodimosti v ravnomernoi predelnoi teoreme Kolmogorova. I”, Teoriya veroyatn. i ee primen., 26:2 (1981), 225–245 | MR | Zbl
[3] T. V. Arak, A. Yu. Zaitsev, Ravnomernye predelnye teoremy dlya summ nezavisimykh sluchainykh velichin, Tr. MIAN SSSR, 174, 1986, 214 pp. | MR | Zbl
[4] Yu. S. Eliseeva, “Mnogomernye otsenki funktsii kontsentratsii vzveshennykh summ nezavisimykh odinakovo raspredelennykh sluchainykh velichin”, Zap. nauchn. semin. POMI, 412, 2013, 121–137 | MR
[5] Yu. S. Eliseeva, F. Gëttse, A. Yu. Zaitsev, “Otsenki funktsii kontsentratsii v probleme Littlvuda–Offorda”, Zap. nauchn. semin. POMI, 420, 2013, 50–69
[6] Yu. S. Eliseeva, F. Götze, A. Yu. Zaitsev, Arak inequalities for concentration functions and the Littlewood–Offord problem, 2015, arXiv: 1506.09034
[7] Yu. S. Eliseeva, A. Yu. Zaitsev, “Otsenki funktsii kontsentratsii vzveshennykh summ nezavisimykh odinakovo raspredelennykh sluchainykh velichin”, Teoriya veroyatn. i ee primen., 57:4 (2012), 768–777 | DOI | Zbl
[8] Yu. S. Eliseeva, A. Yu. Zaitsev, “O probleme Littlvuda–Offorda”, Zap. nauchn. semin. POMI, 431, 2014, 72–81
[9] P. Erdös, “On a lemma of Littlewood and Offord”, Bull. Amer. Math. Soc., 51 (1945), 898–902 | DOI | MR | Zbl
[10] V. Khengartner, R. Teodoresku, Funktsii kontsentratsii, Nauka, M., 1980 | MR
[11] J. E. Littlewood, A. C. Offord, “On the number of real roots of a random algebraic equation”, Rec. Math. [Mat. Sbornik] N.S., 12(54):3 (1943), 277–286 | MR | Zbl
[12] H. Nguyen, V. Vu, “Optimal inverse Littlewood–Offord theorems”, Adv. Math., 226 (2011), 5298–5319 | DOI | MR | Zbl
[13] H. Nguyen, V. Vu, “Small ball probability, inverse theorems, and applications”, Erdös Centennial Proceeding, eds. L. Lovász et. al., Springer, 2013, 409–463 | DOI | MR | Zbl
[14] M. Rudelson, R. Vershynin, “The Littlewood–Offord problem and invertibility of random matrices”, Adv. Math., 218 (2008), 600–633 | DOI | MR | Zbl
[15] M. Rudelson, R. Vershynin, “The smallest singular value of a random rectangular matrix”, Comm. Pure Appl. Math., 62 (2009), 1707–1739 | DOI | MR | Zbl
[16] T. Tao, V. Vu, “Inverse Littlewood–Offord theorems and the condition number of random discrete matrices”, Ann. Math., 169 (2009), 595–632 | DOI | MR | Zbl
[17] T. Tao, V. Vu, “From the Littlewood–Offord problem to the circular law: universality of the spectral distribution of random matrices”, Bull. Amer. Math. Soc., 46 (2009), 377–396 | DOI | MR | Zbl
[18] R. Vershynin, “Invertibility of symmetric random matrices”, Random Structures Algorithms, 44 (2014), 135–182 | DOI | MR | Zbl