On a problem of estimation of an infinite-dimensional parameter
Zapiski Nauchnykh Seminarov POMI, Probability and statistics. Part 22, Tome 441 (2015), pp. 187-203 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice du chapitre de livre

Let $X$ be a random variable taking the positive integer values and let $\mathbf P\{X=k\}=\theta(k)$. We consider the problem of estimation of the parameter $\theta=(\theta(1),\theta(2),\dots)$ on the base of the sample $X_1,X_2,\dots,X_n$ where the observations $X_j$ are independent copies of $X$.
@article{ZNSL_2015_441_a11,
     author = {V. A. Ershov and I. A. Ibragimov},
     title = {On a~problem of estimation of an infinite-dimensional parameter},
     journal = {Zapiski Nauchnykh Seminarov POMI},
     pages = {187--203},
     year = {2015},
     volume = {441},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZNSL_2015_441_a11/}
}
TY  - JOUR
AU  - V. A. Ershov
AU  - I. A. Ibragimov
TI  - On a problem of estimation of an infinite-dimensional parameter
JO  - Zapiski Nauchnykh Seminarov POMI
PY  - 2015
SP  - 187
EP  - 203
VL  - 441
UR  - http://geodesic.mathdoc.fr/item/ZNSL_2015_441_a11/
LA  - ru
ID  - ZNSL_2015_441_a11
ER  - 
%0 Journal Article
%A V. A. Ershov
%A I. A. Ibragimov
%T On a problem of estimation of an infinite-dimensional parameter
%J Zapiski Nauchnykh Seminarov POMI
%D 2015
%P 187-203
%V 441
%U http://geodesic.mathdoc.fr/item/ZNSL_2015_441_a11/
%G ru
%F ZNSL_2015_441_a11
V. A. Ershov; I. A. Ibragimov. On a problem of estimation of an infinite-dimensional parameter. Zapiski Nauchnykh Seminarov POMI, Probability and statistics. Part 22, Tome 441 (2015), pp. 187-203. http://geodesic.mathdoc.fr/item/ZNSL_2015_441_a11/

[1] P. Billingsli, Skhodimost veroyatnostnykh mer, Nauka, M., 1977 | MR

[2] U. Grenander, Abstract Inference, Wiley, New York, 1981 | MR | Zbl

[3] I. A. Ibragimov, R. Z. Khasminskii, Asimptoticheskaya teoriya otsenivaniya, Nauka, M., 1979 | MR

[4] V. V. Petrov, Predelnye teoremy dlya summ nezavisimykh sluchainykh velichin, Nauka, M., 1987 | MR

[5] R. Hasminskii, I. Ibragimov, “On density estimation in the view of Kolmogorov's ideas in approximation theory”, Ann. Statist., 18:3 (1990), 999–1010 | DOI | MR | Zbl