@article{ZNSL_2015_441_a10,
author = {R. Dakovic and M. Denker and M. Gordin},
title = {Circular unitary ensembles: parametric models and their asymptotic maximum likelihood estimates},
journal = {Zapiski Nauchnykh Seminarov POMI},
pages = {163--186},
year = {2015},
volume = {441},
language = {en},
url = {http://geodesic.mathdoc.fr/item/ZNSL_2015_441_a10/}
}
TY - JOUR AU - R. Dakovic AU - M. Denker AU - M. Gordin TI - Circular unitary ensembles: parametric models and their asymptotic maximum likelihood estimates JO - Zapiski Nauchnykh Seminarov POMI PY - 2015 SP - 163 EP - 186 VL - 441 UR - http://geodesic.mathdoc.fr/item/ZNSL_2015_441_a10/ LA - en ID - ZNSL_2015_441_a10 ER -
%0 Journal Article %A R. Dakovic %A M. Denker %A M. Gordin %T Circular unitary ensembles: parametric models and their asymptotic maximum likelihood estimates %J Zapiski Nauchnykh Seminarov POMI %D 2015 %P 163-186 %V 441 %U http://geodesic.mathdoc.fr/item/ZNSL_2015_441_a10/ %G en %F ZNSL_2015_441_a10
R. Dakovic; M. Denker; M. Gordin. Circular unitary ensembles: parametric models and their asymptotic maximum likelihood estimates. Zapiski Nauchnykh Seminarov POMI, Probability and statistics. Part 22, Tome 441 (2015), pp. 163-186. http://geodesic.mathdoc.fr/item/ZNSL_2015_441_a10/
[1] M. Adler, P. van Moerbeke, “Recursion relations for unitary integrals, combinatorics and the Toeplitz lattice”, Comm. Math. Phys., 237:3 (2003), 397–440 | DOI | MR | Zbl
[2] T. W. Anderson, An Introduction to Multivariate Statistical Analysis, Wiley Series in Probability and Statistics, third edition, Wiley-Interscience [John Wiley Sons], Hoboken, NJ, 2003 | MR | Zbl
[3] J. Baik, P. Deift, K. Johansson, “On the distribution of the length of the longest increasing subsequence of random permutations”, J. Amer. Math. Soc., 12:4 (1999), 1119–1178 | DOI | MR | Zbl
[4] J. Baik, P. Deift, E. Rains, “A Fredholm determinant identity and the convergence of moments for random Young tableaux”, Comm. Math. Phys., 223:3 (2001), 627–672 | DOI | MR | Zbl
[5] J. Baik, Circular unitary ensemble with highly oscillatory potential, June 13, 2013, arXiv: 1306.0216v2
[6] Z. Bai, J. Silverstein, Spectral Analysis of Large Dimensional Random Matrices, Springer Series in Statistics, Second edition, Springer, New York, 2010 | DOI | MR | Zbl
[7] C. W. J. Beenakker, “Universality in the random-matrix theory of quantum transport”, Phys. Rev. Lett., 70 (1993), 1155–1158 | DOI
[8] P. M. Bleher, A. R. Its, “Asymptotics of the partition function of a random matrix model”, Ann. Inst. Fourier (Grenoble), 55:6 (2005), 1943–2000 | DOI | MR | Zbl
[9] A. Borodin, A. Okounkov, “A Fredholm determinant formula for Toeplitz determinants”, Integral Equations Operator Theory, 37:4 (2000), 386–396 | DOI | MR | Zbl
[10] A. Borodin, G. Olshanski, “Harmonic analysis on the infinite-dimensional unitary group and determinantal point processes”, Ann. Math. (2), 161:3 (2005), 1319–1422 | DOI | MR | Zbl
[11] A. Borodin, “Discrete gap probabilities and discrete Painlevé equations”, Duke Math. J., 117:3 (2003), 489–542 | DOI | MR | Zbl
[12] L. D. Brown, Fundamentals of Statistical Exponential Families with Applications in Statistical Decision Theory, Institute of Mathematical Statistics Lecture Notes Monograph Series, 9, Institute of Mathematical Statistics, Hayward, CA, 1986 | MR | Zbl
[13] P. A. Deift, Orthogonal Polynomials and Random Matrices: a Riemann–Hilbert Approach, Courant Lecture Notes in Mathematics, 3, New York University Courant Institute of Mathematical Sciences, New York; Amer. Math. Soc., Providence, RI, 1999 | MR
[14] P. Diaconis, S. N. Evans, “Linear functionals of eigenvalues of random matrices”, Trans. Amer. Math. Soc., 353:7 (2001), 2615–2633 | DOI | MR | Zbl
[15] P. Di Francesco, P. Ginsparg, J. Zinn-Justin, “$2D$ gravity and random matrices”, Phys. Rep., 254:1–2 (1995), 133 | MR
[16] I. Dumitriu, A. Edelman, “Global spectrum fluctuations for the $\beta$-Hemite and $\beta$-Lagurre ensembles via matrix models”, J. Math. Phys., 47:6 (2006), 063302 | DOI | MR | Zbl
[17] F. J. Dyson, “Statistical theory of the energy levels of complex systems. I”, J. Math. Phys., 3 (1962), 140–156 | DOI | MR | Zbl
[18] P. Forrester, Log-Gases and Random Matrices, London Math. Soc. Monographs Series, 34, Princeton University Press, Princeton, NJ, 2010 | MR | Zbl
[19] D. J. Gross, E. Witten, “Possible third-order phase transition in the large-$n$ lattice gauge theory”, Phys. Rev. D, 21:2 (1980), 446–453 | DOI
[20] F. Haake, Quantum Signatures of Chaos, Springer Series in Synergetics, second edition, Springer-Verlag, Berlin, 2001, With a foreword by H. Haken | DOI | MR | Zbl
[21] I. A. Ibragimov, “A theorem of Gabor Szegő”, Mat. Zametki, 3:6 (1968), 693–702 | MR | Zbl
[22] M. E. H. Ismail, N. S. Witte, “Discriminants and functional equations for polynomials orthogonal on the unit circle”, J. Approx. Theory, 110:2 (2001), 200–228 | DOI | MR | Zbl
[23] R. A. Jalabert, J. Pichard, “Quantum mesoscopic scattering: Disordered systems and Dyson circular ensembles”, J. Phys. I France, 5 (1995), 287–324 | DOI
[24] S. R. Jammalamadaka, A. SenGupta, Topics in Circular Statistics, Series on Multivariate Analysis, 5, World Scientific Publishing Co. Inc., River Edge, NJ, 2001 | MR | Zbl
[25] K. Johansson, “On random matrices from the compact classical groups”, Ann. Math. (2), 145:3 (1997), 519–545 | DOI | MR | Zbl
[26] K. Johansson, “The longest increasing subsequence in a random permutation and a unitary random matrix model”, Math. Res. Lett., 5:1–2 (1998), 63–82 | MR | Zbl
[27] K. Johansson, “On fluctuations of eigenvalues of random Hermitian matrices”, Duke Math. J., 91:1 (1998), 151–204 | DOI | MR | Zbl
[28] J. V. José, R. Cordery, “Study of a quantum fermi-acceleration model”, Phys. Rev. Lett., 56:4 (1986), 290–293 | DOI
[29] R. Matic, Estimation problems related to random matrix exsembles, PhD dissertation, Georg-August-Universität Göttingen, 2006
[30] K. T.-R. McLaughlin, P. D. Miller, “The $\overline\partial$ steepest descent method and the asymptotic behavior of polynomials orthogonal on the unit circle with fixed and exponentially varying nonanalytic weights”, IMRP Int. Math. res. Pap., 2006 (2006), Art. ID 48674, 77 pp. | MR
[31] M. L. Mehta, Random Matrices, Pure and Applied Mathematics, 142, third edition, Elsevier/Academic Press, Amsterdam, 2004 | MR | Zbl
[32] R. J. Muirhead, Aspects of Multivariate Statistical Theory, Wiley Series in Probability and Mathematical Statistics, John Wiley Sons Inc., New York, 1982 | DOI | MR | Zbl
[33] K. E. Muttalib, M. E. H. Ismail, “Impact of localization on Dysons circular ensemble”, J. Phys. A: Math. Gen., 28 (1995), L541–L548 | DOI | MR | Zbl
[34] T. Nagao, M. Wadati, “An integration method on generalized circular ensembles”, J. Phys. Soc. Japan, 61:6 (1992), 1903–1909 | DOI | MR
[35] V. Periwal, D. Shevitz, “Unitary-matrix models as exactly solvable string theories”, Phys. Rev. Lett., 64:12 (1990), 1326–1329 | DOI | MR
[36] P. Rambour, A. Seghier, “The generalised Dyson circular unitary ensemble: asymptotic distribution of the eigenvalues at the origin of the spectrum”, Integral Equations Operator Theory, 69:4 (2011), 535–555 | DOI | MR | Zbl
[37] B. Simon, Orthogonal Polynomials on the Unit Circle. Part 1. Classical Theory, American Mathematical Society Colloquium Publications, 54, American Mathematical Society, Providence, RI, 2005 | MR | Zbl
[38] A. Soshnikov, “The central limit theorem for local linear statistics in classical compact groups and related combinatorial identities”, Ann. Probab., 28:3 (2000), 1353–1370 | DOI | MR | Zbl
[39] G. Szegő, Orthogonal Polynomials, American Mathematical Society Colloquium Publications, 23, fourth edition, American Mathematical Society, Providence, RI, 1975 | MR
[40] C. A. Tracy, H. Widom, “Random unitary matrices, permutations and Painlevé”, Comm. Math. Phys., 207:3 (1999), 665–685 | DOI | MR | Zbl
[41] A. M. Tulino, S. Verdù, “Random matrix theory and wireless communications”, Foundation and Trends in Communications and Information Theory, 1:1 (2004), 1–182 | DOI
[42] H. Weyl, “Theorie der Darstellungen kontinuierlicher halbeinfacher Gruppen durch lineare Transformationen. I”, Math. Z., 23:1 (1925), 271–309 | DOI | MR | Zbl
[43] H. Weyl, “Theorie der Darstellungen kontinuierlicher halbeinfacher Gruppen durch lineare Transformationen. II”, Math. Z., 24:1 (1926), 328–376 | DOI | MR
[44] H. Widom, “On convergence of moments for random Young tableaux and a random growth model”, Int. Math. Res. Not., 2002:9 (2002), 455–464 | DOI | MR | Zbl
[45] E. P. Wigner, “On the statistical distribution of the widths and spacings of nuclear resonance levels”, Proc. Cambridge. Phil. Soc., 47 (1951), 790–798 | DOI | Zbl
[46] E. P. Wigner, “Characteristic vectors of bordered matrices with infinite dimensions”, Ann. Math. (2), 62 (1955), 548–564 | DOI | MR | Zbl
[47] E. P. Wigner, “On the distribution of the roots of certain symmetric matrices”, Ann. Math. (2), 67 (1958), 325–327 | DOI | MR | Zbl
[48] J. Wishart, “The generalized product moment distribution in samples from a normal multivariate population”, Biometrika, 20A:1–2 (1928), 32–52 | DOI