Normalized incomplete beta function: log-concavity in parameters and other properties
Zapiski Nauchnykh Seminarov POMI, Analytical theory of numbers and theory of functions. Part 30, Tome 440 (2015), pp. 138-161 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice du chapitre de livre

Logarithmic concavity/convexity in parameters of the normalized incomplete beta function has been demonstrated by Finner and Roters in 1997 as a corollary of a rather difficult result based on generalized reproductive property of certain distributions. In the first part of this paper we give a direct analytic proof of the logarithmic concavity/convexity mentioned above. In the second part, we strengthen these results by proving that power series coefficients of the generalized Turán determinants formed by the parameter shifts of the normalized incomplete beta function have constant sign under some additional restrictions. Our method also leads to various other new facts which may be of independent interest. In particular, we establish linearization formulas and two-sided bounds for the above mentioned Turán determinants. Further, we find two identities of combinatorial type which we believe to be new.
@article{ZNSL_2015_440_a9,
     author = {D. B. Karp},
     title = {Normalized incomplete beta function: log-concavity in parameters and other properties},
     journal = {Zapiski Nauchnykh Seminarov POMI},
     pages = {138--161},
     year = {2015},
     volume = {440},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/ZNSL_2015_440_a9/}
}
TY  - JOUR
AU  - D. B. Karp
TI  - Normalized incomplete beta function: log-concavity in parameters and other properties
JO  - Zapiski Nauchnykh Seminarov POMI
PY  - 2015
SP  - 138
EP  - 161
VL  - 440
UR  - http://geodesic.mathdoc.fr/item/ZNSL_2015_440_a9/
LA  - en
ID  - ZNSL_2015_440_a9
ER  - 
%0 Journal Article
%A D. B. Karp
%T Normalized incomplete beta function: log-concavity in parameters and other properties
%J Zapiski Nauchnykh Seminarov POMI
%D 2015
%P 138-161
%V 440
%U http://geodesic.mathdoc.fr/item/ZNSL_2015_440_a9/
%G en
%F ZNSL_2015_440_a9
D. B. Karp. Normalized incomplete beta function: log-concavity in parameters and other properties. Zapiski Nauchnykh Seminarov POMI, Analytical theory of numbers and theory of functions. Part 30, Tome 440 (2015), pp. 138-161. http://geodesic.mathdoc.fr/item/ZNSL_2015_440_a9/

[1] H. Alzer, “Inequalities for the chi square distribution function”, J. Math. Anal. Appl., 223 (1998), 151–157 | DOI | MR | Zbl

[2] H. Alzer, Á. Baricz, “Functional inequalities for the incomplete gamma function”, J. Math. Anal. Appl., 385 (2012), 167–178 | DOI | MR | Zbl

[3] G. E. Andrews, R. Askey, R. Roy, Special functions, Cambridge University Press, 1999 | MR | Zbl

[4] R. Arratia, S. Garibaldi, L. Mower, P. B. Stark, “Some people have all the luck”, Math. Mag., 88 (2015), 196–211 | DOI | MR | Zbl

[5] J. Bustoz, M. E. H. Ismail, “On gamma function inequalities”, Math. Comp., 47 (1986), 659–667 | DOI | MR | Zbl

[6] H. Finner, M. Roters, “Distribution functions and log-concavity”, Comm. Statist. Theory Methods, 22 (1993), 2381–2396 | DOI | MR | Zbl

[7] H. Finner, M. Roters, “Log-concavity and inequalities for chi-square, $F$ and beta distributions with applications in multiple comparisons”, Statistica Sinica, 7 (1997), 771–787 | MR

[8] A. Gelman, J. B. Carlin, H. S. Stern, D. B. Rubin, Bayesian Data Analysis, 2nd edition, CRC Press, 2003 | MR

[9] S. Das Gupta, S. K. Sarkar, “On $TP_2$ and log-concavity”, Inequalities in Statistics and Probability (Lincoln, Neb., 1982), Lecture notes monogr. ser., 5, Inst. Math. Statist., Hayward, CA, 1984, 54–58 | MR

[10] S. I. Kalmykov, D. B. Karp, “Log-convexity and log-concavity for series in gamma ratios and applications”, J. Math. Anal. Appl., 406 (2013), 400–418 | DOI | MR | Zbl

[11] Russian Mathematics, 58:6 (2014), 63–68 | DOI | MR | Zbl

[12] D. Karp, S. M. Sitnik, “Log-convexity and log-concavity of hypergeometric-like functions”, J. Math. Anal. Appl., 364 (2010), 384–394 | DOI | MR | Zbl

[13] D. S. Mitrinović, J. E. Pecarić, A. M. Fink, Classical and new inequalities in Analysis, Kluwer Academic Publishers, 1993 | MR | Zbl

[14] J. E. Pečarić, F. Prosch, Y. L. Tong, Convex Functions, Partial Orderings, and Statistical Applications, Academic Press, 1993 | MR

[15] A. P. Prudnikov, Yu. A. Brychkov, O. I. Marichev, Integrals and series, v. 3, More Special Functions, Gordon and Breach Science Publishers, 1990 | MR | Zbl

[16] F. Qi, B.-N. Guo, “Completely monotonic functions involving divided differences of the di- and tri-gamma functions and some applications”, Commun. Pure Appl. Anal., 8:6 (2009), 1975–1989 | DOI | MR | Zbl