@article{ZNSL_2015_440_a9,
author = {D. B. Karp},
title = {Normalized incomplete beta function: log-concavity in parameters and other properties},
journal = {Zapiski Nauchnykh Seminarov POMI},
pages = {138--161},
year = {2015},
volume = {440},
language = {en},
url = {http://geodesic.mathdoc.fr/item/ZNSL_2015_440_a9/}
}
D. B. Karp. Normalized incomplete beta function: log-concavity in parameters and other properties. Zapiski Nauchnykh Seminarov POMI, Analytical theory of numbers and theory of functions. Part 30, Tome 440 (2015), pp. 138-161. http://geodesic.mathdoc.fr/item/ZNSL_2015_440_a9/
[1] H. Alzer, “Inequalities for the chi square distribution function”, J. Math. Anal. Appl., 223 (1998), 151–157 | DOI | MR | Zbl
[2] H. Alzer, Á. Baricz, “Functional inequalities for the incomplete gamma function”, J. Math. Anal. Appl., 385 (2012), 167–178 | DOI | MR | Zbl
[3] G. E. Andrews, R. Askey, R. Roy, Special functions, Cambridge University Press, 1999 | MR | Zbl
[4] R. Arratia, S. Garibaldi, L. Mower, P. B. Stark, “Some people have all the luck”, Math. Mag., 88 (2015), 196–211 | DOI | MR | Zbl
[5] J. Bustoz, M. E. H. Ismail, “On gamma function inequalities”, Math. Comp., 47 (1986), 659–667 | DOI | MR | Zbl
[6] H. Finner, M. Roters, “Distribution functions and log-concavity”, Comm. Statist. Theory Methods, 22 (1993), 2381–2396 | DOI | MR | Zbl
[7] H. Finner, M. Roters, “Log-concavity and inequalities for chi-square, $F$ and beta distributions with applications in multiple comparisons”, Statistica Sinica, 7 (1997), 771–787 | MR
[8] A. Gelman, J. B. Carlin, H. S. Stern, D. B. Rubin, Bayesian Data Analysis, 2nd edition, CRC Press, 2003 | MR
[9] S. Das Gupta, S. K. Sarkar, “On $TP_2$ and log-concavity”, Inequalities in Statistics and Probability (Lincoln, Neb., 1982), Lecture notes monogr. ser., 5, Inst. Math. Statist., Hayward, CA, 1984, 54–58 | MR
[10] S. I. Kalmykov, D. B. Karp, “Log-convexity and log-concavity for series in gamma ratios and applications”, J. Math. Anal. Appl., 406 (2013), 400–418 | DOI | MR | Zbl
[11] Russian Mathematics, 58:6 (2014), 63–68 | DOI | MR | Zbl
[12] D. Karp, S. M. Sitnik, “Log-convexity and log-concavity of hypergeometric-like functions”, J. Math. Anal. Appl., 364 (2010), 384–394 | DOI | MR | Zbl
[13] D. S. Mitrinović, J. E. Pecarić, A. M. Fink, Classical and new inequalities in Analysis, Kluwer Academic Publishers, 1993 | MR | Zbl
[14] J. E. Pečarić, F. Prosch, Y. L. Tong, Convex Functions, Partial Orderings, and Statistical Applications, Academic Press, 1993 | MR
[15] A. P. Prudnikov, Yu. A. Brychkov, O. I. Marichev, Integrals and series, v. 3, More Special Functions, Gordon and Breach Science Publishers, 1990 | MR | Zbl
[16] F. Qi, B.-N. Guo, “Completely monotonic functions involving divided differences of the di- and tri-gamma functions and some applications”, Commun. Pure Appl. Anal., 8:6 (2009), 1975–1989 | DOI | MR | Zbl