On estimate of the norm of the holomorphic component of a meromorphic function in finitely connected domains
Zapiski Nauchnykh Seminarov POMI, Analytical theory of numbers and theory of functions. Part 30, Tome 440 (2015), pp. 123-137 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice du chapitre de livre

In this paper we extend Gonchar–Grigorjan type estimate of the norm of holomorphic part of meromorphic functions in finitely connected Jordan domains with $C^2$ smooth boundary when the poles are in a compact set. A uniform estimate for Cauchy type integral is also given.
@article{ZNSL_2015_440_a8,
     author = {S. Kalmykov and B. Nagy},
     title = {On estimate of the norm of the holomorphic component of a~meromorphic function in finitely connected domains},
     journal = {Zapiski Nauchnykh Seminarov POMI},
     pages = {123--137},
     year = {2015},
     volume = {440},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/ZNSL_2015_440_a8/}
}
TY  - JOUR
AU  - S. Kalmykov
AU  - B. Nagy
TI  - On estimate of the norm of the holomorphic component of a meromorphic function in finitely connected domains
JO  - Zapiski Nauchnykh Seminarov POMI
PY  - 2015
SP  - 123
EP  - 137
VL  - 440
UR  - http://geodesic.mathdoc.fr/item/ZNSL_2015_440_a8/
LA  - en
ID  - ZNSL_2015_440_a8
ER  - 
%0 Journal Article
%A S. Kalmykov
%A B. Nagy
%T On estimate of the norm of the holomorphic component of a meromorphic function in finitely connected domains
%J Zapiski Nauchnykh Seminarov POMI
%D 2015
%P 123-137
%V 440
%U http://geodesic.mathdoc.fr/item/ZNSL_2015_440_a8/
%G en
%F ZNSL_2015_440_a8
S. Kalmykov; B. Nagy. On estimate of the norm of the holomorphic component of a meromorphic function in finitely connected domains. Zapiski Nauchnykh Seminarov POMI, Analytical theory of numbers and theory of functions. Part 30, Tome 440 (2015), pp. 123-137. http://geodesic.mathdoc.fr/item/ZNSL_2015_440_a8/

[1] J. Cacoq, B. de la Calle Ysern, G. López Lagomasino, “Direct and inverse results on row sequences of Hermite–Padé approximants”, Constr. Approx., 38:1 (2013), 133–160 | DOI | MR | Zbl

[2] J. B. Conway, Functions of One Complex Variable, v. II, Graduate Texts in Mathematics, 159, Springer-Verlag, New York, 1995 | DOI | MR | Zbl

[3] T. W. Gamelin, Complex Analysis, Undergraduate Texts in Mathematics, Springer-Verlag, New York, 2001 | DOI | MR | Zbl

[4] A. A. Gončar, “The problems of E. I. Zolotarev which are connected with rational functions”, Mat. Sb. (N.S.), 78(120):4 (1969), 640–654 | MR | Zbl

[5] A. A. Gončar, L. D. Grigorjan, “Estimations of the norm of the holomorphic component of a meromorphic function”, Mat. Sb. (N.S.), 99(141):4 (1976), 634–638 | MR | Zbl

[6] L. D. Grigorjan, “Estimates of the norm of holomorphic components of meromorphic functions in domains with a smooth boundary”, Mat. Sb. (N.S.), 100(142):1 (1976), 156–164 | MR | Zbl

[7] L. D. Grigorjan, “A generalization of a theorem of E. Landau”, Izv. Akad. Nauk Armjan. SSR Ser. Mat., 12:3 (1977), 229–233 | MR

[8] L. D. Grigorjan, “On the order of growth for the norm of the holomorphic component of a meromorphic function”, Analytic functions, Proc. Seventh Conf. (Kozubnik, 1979), Lecture Notes Math., 798, 1980, 165–168 | DOI | MR | Zbl

[9] S. Kalmykov, B. Nagy, “Polynomial and rational inequalities on analytic Jordan arcs and domains”, J. Math. Anal. Appl., 430:2 (2015), 874–894 | DOI | MR | Zbl

[10] T. Kövari, Ch. Pommerenke, “On Faber polynomials and Faber expansions”, Math. Z., 99 (1967), 193–206 | DOI | MR | Zbl

[11] E. Landau, D. Gaier, Darstellung und Begründung Einiger Neuerer Ergebnisse der Funktionentheorie, Springer-Verlag, Berlin, 1986 | MR | Zbl

[12] D. S. Lubinsky, “On the diagonal Padé approximants of meromorphic functions”, Indag. Math. (N.S.), 7 (1996), 97–110 | DOI | MR | Zbl

[13] A. I. Markushevich, Theory of functions of a complex variable, Translated and edited by Richard A. Silverman, v. I, II, III, 2nd English ed., Chelsea Publishing Co., New York, 1977 | MR | Zbl

[14] Ch. Pommerenke, Boundary Behaviour of Conformal Maps, Grundlehren der Mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences], 299, Springer-Verlag, Berlin, 1992 | DOI | MR | Zbl

[15] T. Ransford, Potential theory in the complex plane, Appendix B by Thomas Bloom, London Mathematical Society Student Texts, 28, Cambridge University Press, Cambridge, 1995 | MR | Zbl

[16] E. B. Saff, V. Totik, Logarithmic potentials with external fields, Appendix B by Thomas Bloom, Grundlehren der Mathematischen Wissenschaften. Fundamental Principles of Mathematical Sciences, 316, Springer-Verlag, Berlin, 1997 | DOI | MR | Zbl

[17] P. K. Suetin, Series of Faber Polynomials, Analytical Methods and Special Functions, 1, Amsterdam, 1998 | MR | Zbl