On estimate of the norm of the holomorphic component of a~meromorphic function in finitely connected domains
Zapiski Nauchnykh Seminarov POMI, Analytical theory of numbers and theory of functions. Part 30, Tome 440 (2015), pp. 123-137
Voir la notice de l'article provenant de la source Math-Net.Ru
In this paper we extend Gonchar–Grigorjan type estimate of the norm of holomorphic part of meromorphic functions in finitely connected Jordan domains with $C^2$ smooth boundary when the poles are in a compact set. A uniform estimate for Cauchy type integral is also given.
@article{ZNSL_2015_440_a8,
author = {S. Kalmykov and B. Nagy},
title = {On estimate of the norm of the holomorphic component of a~meromorphic function in finitely connected domains},
journal = {Zapiski Nauchnykh Seminarov POMI},
pages = {123--137},
publisher = {mathdoc},
volume = {440},
year = {2015},
language = {en},
url = {http://geodesic.mathdoc.fr/item/ZNSL_2015_440_a8/}
}
TY - JOUR AU - S. Kalmykov AU - B. Nagy TI - On estimate of the norm of the holomorphic component of a~meromorphic function in finitely connected domains JO - Zapiski Nauchnykh Seminarov POMI PY - 2015 SP - 123 EP - 137 VL - 440 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/ZNSL_2015_440_a8/ LA - en ID - ZNSL_2015_440_a8 ER -
%0 Journal Article %A S. Kalmykov %A B. Nagy %T On estimate of the norm of the holomorphic component of a~meromorphic function in finitely connected domains %J Zapiski Nauchnykh Seminarov POMI %D 2015 %P 123-137 %V 440 %I mathdoc %U http://geodesic.mathdoc.fr/item/ZNSL_2015_440_a8/ %G en %F ZNSL_2015_440_a8
S. Kalmykov; B. Nagy. On estimate of the norm of the holomorphic component of a~meromorphic function in finitely connected domains. Zapiski Nauchnykh Seminarov POMI, Analytical theory of numbers and theory of functions. Part 30, Tome 440 (2015), pp. 123-137. http://geodesic.mathdoc.fr/item/ZNSL_2015_440_a8/