@article{ZNSL_2015_440_a8,
author = {S. Kalmykov and B. Nagy},
title = {On estimate of the norm of the holomorphic component of a~meromorphic function in finitely connected domains},
journal = {Zapiski Nauchnykh Seminarov POMI},
pages = {123--137},
year = {2015},
volume = {440},
language = {en},
url = {http://geodesic.mathdoc.fr/item/ZNSL_2015_440_a8/}
}
TY - JOUR AU - S. Kalmykov AU - B. Nagy TI - On estimate of the norm of the holomorphic component of a meromorphic function in finitely connected domains JO - Zapiski Nauchnykh Seminarov POMI PY - 2015 SP - 123 EP - 137 VL - 440 UR - http://geodesic.mathdoc.fr/item/ZNSL_2015_440_a8/ LA - en ID - ZNSL_2015_440_a8 ER -
S. Kalmykov; B. Nagy. On estimate of the norm of the holomorphic component of a meromorphic function in finitely connected domains. Zapiski Nauchnykh Seminarov POMI, Analytical theory of numbers and theory of functions. Part 30, Tome 440 (2015), pp. 123-137. http://geodesic.mathdoc.fr/item/ZNSL_2015_440_a8/
[1] J. Cacoq, B. de la Calle Ysern, G. López Lagomasino, “Direct and inverse results on row sequences of Hermite–Padé approximants”, Constr. Approx., 38:1 (2013), 133–160 | DOI | MR | Zbl
[2] J. B. Conway, Functions of One Complex Variable, v. II, Graduate Texts in Mathematics, 159, Springer-Verlag, New York, 1995 | DOI | MR | Zbl
[3] T. W. Gamelin, Complex Analysis, Undergraduate Texts in Mathematics, Springer-Verlag, New York, 2001 | DOI | MR | Zbl
[4] A. A. Gončar, “The problems of E. I. Zolotarev which are connected with rational functions”, Mat. Sb. (N.S.), 78(120):4 (1969), 640–654 | MR | Zbl
[5] A. A. Gončar, L. D. Grigorjan, “Estimations of the norm of the holomorphic component of a meromorphic function”, Mat. Sb. (N.S.), 99(141):4 (1976), 634–638 | MR | Zbl
[6] L. D. Grigorjan, “Estimates of the norm of holomorphic components of meromorphic functions in domains with a smooth boundary”, Mat. Sb. (N.S.), 100(142):1 (1976), 156–164 | MR | Zbl
[7] L. D. Grigorjan, “A generalization of a theorem of E. Landau”, Izv. Akad. Nauk Armjan. SSR Ser. Mat., 12:3 (1977), 229–233 | MR
[8] L. D. Grigorjan, “On the order of growth for the norm of the holomorphic component of a meromorphic function”, Analytic functions, Proc. Seventh Conf. (Kozubnik, 1979), Lecture Notes Math., 798, 1980, 165–168 | DOI | MR | Zbl
[9] S. Kalmykov, B. Nagy, “Polynomial and rational inequalities on analytic Jordan arcs and domains”, J. Math. Anal. Appl., 430:2 (2015), 874–894 | DOI | MR | Zbl
[10] T. Kövari, Ch. Pommerenke, “On Faber polynomials and Faber expansions”, Math. Z., 99 (1967), 193–206 | DOI | MR | Zbl
[11] E. Landau, D. Gaier, Darstellung und Begründung Einiger Neuerer Ergebnisse der Funktionentheorie, Springer-Verlag, Berlin, 1986 | MR | Zbl
[12] D. S. Lubinsky, “On the diagonal Padé approximants of meromorphic functions”, Indag. Math. (N.S.), 7 (1996), 97–110 | DOI | MR | Zbl
[13] A. I. Markushevich, Theory of functions of a complex variable, Translated and edited by Richard A. Silverman, v. I, II, III, 2nd English ed., Chelsea Publishing Co., New York, 1977 | MR | Zbl
[14] Ch. Pommerenke, Boundary Behaviour of Conformal Maps, Grundlehren der Mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences], 299, Springer-Verlag, Berlin, 1992 | DOI | MR | Zbl
[15] T. Ransford, Potential theory in the complex plane, Appendix B by Thomas Bloom, London Mathematical Society Student Texts, 28, Cambridge University Press, Cambridge, 1995 | MR | Zbl
[16] E. B. Saff, V. Totik, Logarithmic potentials with external fields, Appendix B by Thomas Bloom, Grundlehren der Mathematischen Wissenschaften. Fundamental Principles of Mathematical Sciences, 316, Springer-Verlag, Berlin, 1997 | DOI | MR | Zbl
[17] P. K. Suetin, Series of Faber Polynomials, Analytical Methods and Special Functions, 1, Amsterdam, 1998 | MR | Zbl