On estimate of the norm of the holomorphic component of a~meromorphic function in finitely connected domains
Zapiski Nauchnykh Seminarov POMI, Analytical theory of numbers and theory of functions. Part 30, Tome 440 (2015), pp. 123-137

Voir la notice de l'article provenant de la source Math-Net.Ru

In this paper we extend Gonchar–Grigorjan type estimate of the norm of holomorphic part of meromorphic functions in finitely connected Jordan domains with $C^2$ smooth boundary when the poles are in a compact set. A uniform estimate for Cauchy type integral is also given.
@article{ZNSL_2015_440_a8,
     author = {S. Kalmykov and B. Nagy},
     title = {On estimate of the norm of the holomorphic component of a~meromorphic function in finitely connected domains},
     journal = {Zapiski Nauchnykh Seminarov POMI},
     pages = {123--137},
     publisher = {mathdoc},
     volume = {440},
     year = {2015},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/ZNSL_2015_440_a8/}
}
TY  - JOUR
AU  - S. Kalmykov
AU  - B. Nagy
TI  - On estimate of the norm of the holomorphic component of a~meromorphic function in finitely connected domains
JO  - Zapiski Nauchnykh Seminarov POMI
PY  - 2015
SP  - 123
EP  - 137
VL  - 440
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/ZNSL_2015_440_a8/
LA  - en
ID  - ZNSL_2015_440_a8
ER  - 
%0 Journal Article
%A S. Kalmykov
%A B. Nagy
%T On estimate of the norm of the holomorphic component of a~meromorphic function in finitely connected domains
%J Zapiski Nauchnykh Seminarov POMI
%D 2015
%P 123-137
%V 440
%I mathdoc
%U http://geodesic.mathdoc.fr/item/ZNSL_2015_440_a8/
%G en
%F ZNSL_2015_440_a8
S. Kalmykov; B. Nagy. On estimate of the norm of the holomorphic component of a~meromorphic function in finitely connected domains. Zapiski Nauchnykh Seminarov POMI, Analytical theory of numbers and theory of functions. Part 30, Tome 440 (2015), pp. 123-137. http://geodesic.mathdoc.fr/item/ZNSL_2015_440_a8/