Two-dimension approximations by the method of dividing toric tilings
Zapiski Nauchnykh Seminarov POMI, Analytical theory of numbers and theory of functions. Part 30, Tome 440 (2015), pp. 81-98
Cet article a éte moissonné depuis la source Math-Net.Ru
An infinite sequence of dividing two-dimensional toric tilings is constructed via the differentiation method. The nucleus of these tilings has radius tending to zero and it contains a point having the best approximations on tori with respect to some norm metric which is defined by the initial karyon.
@article{ZNSL_2015_440_a6,
author = {V. G. Zhuravlev},
title = {Two-dimension approximations by the method of dividing toric tilings},
journal = {Zapiski Nauchnykh Seminarov POMI},
pages = {81--98},
year = {2015},
volume = {440},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/ZNSL_2015_440_a6/}
}
V. G. Zhuravlev. Two-dimension approximations by the method of dividing toric tilings. Zapiski Nauchnykh Seminarov POMI, Analytical theory of numbers and theory of functions. Part 30, Tome 440 (2015), pp. 81-98. http://geodesic.mathdoc.fr/item/ZNSL_2015_440_a6/
[1] V. G. Zhuravlev, “Delyaschiesya razbieniya tora i mnozhestva ogranichennogo ostatka”, Zap. nauchn. semin. POMI, 440, 2015, 99–122
[2] E. Hecke, “Über analytische Funktionen und die Verteilung von Zahlen mod Eins”, Math. Sem. Hamburg. Univ., 1 (1921), 54–76 | DOI | MR
[3] V. G. Zhuravlev, “Odnomernye razbieniya Fibonachchi”, Izv. RAN. Ser. mat., 71:2 (2007), 287–321 | MR
[4] A. Ya. Khinchin, Tsepnye drobi, Nauka, M., 1978 | MR
[5] H. Weyl, “Über die Gleichverteilung von Zahlen $\mathrm{mod}$ Eins”, Math. Ann., 77 (1916), 313–352 | DOI | MR | Zbl