On strong approximation of functions by positive operators
Zapiski Nauchnykh Seminarov POMI, Analytical theory of numbers and theory of functions. Part 30, Tome 440 (2015), pp. 68-80
Cet article a éte moissonné depuis la source Math-Net.Ru
We consider questions of strong approximation of continuous functions by positive operators. The estimations are established in the terms of modulus of continuity and its convex majorant.
@article{ZNSL_2015_440_a5,
author = {V. V. Zhuk},
title = {On strong approximation of functions by positive operators},
journal = {Zapiski Nauchnykh Seminarov POMI},
pages = {68--80},
year = {2015},
volume = {440},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/ZNSL_2015_440_a5/}
}
V. V. Zhuk. On strong approximation of functions by positive operators. Zapiski Nauchnykh Seminarov POMI, Analytical theory of numbers and theory of functions. Part 30, Tome 440 (2015), pp. 68-80. http://geodesic.mathdoc.fr/item/ZNSL_2015_440_a5/
[1] V. Zhuk, G. Natanson, “K voprosu priblizheniya funktsii posredstvom polozhitelnykh operatorov”, Trudy po matematike i mekhanike, XIX, Uchenye zapiski Tartuskogo gos. un-ta, 430, Tartu, 1977, 58–69
[2] V. I. Zubov, “Interpolyatsionnye mnogochleny Bernshteina”, Dokl. RAN, 343:5 (1995), 593–595 | MR | Zbl
[3] V. V. Zhuk, Strukturnye svoistva funktsii i tochnost approksimatsii, L., 1984
[4] I. K. Daugavet, Vvedenie v klassicheskuyu teoriyu priblizheniya funktsii, S.-P., 2011