The condition of smallness of girth on Sub-Finsler spaces
Zapiski Nauchnykh Seminarov POMI, Analytical theory of numbers and theory of functions. Part 30, Tome 440 (2015), pp. 57-67 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice du chapitre de livre

In this paper, the condition of smallness of girth relatively some curves families for removable sets on Sub-Finsler spaces is stated.
@article{ZNSL_2015_440_a4,
     author = {Yu. V. Dymchenko},
     title = {The condition of smallness of girth on {Sub-Finsler} spaces},
     journal = {Zapiski Nauchnykh Seminarov POMI},
     pages = {57--67},
     year = {2015},
     volume = {440},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZNSL_2015_440_a4/}
}
TY  - JOUR
AU  - Yu. V. Dymchenko
TI  - The condition of smallness of girth on Sub-Finsler spaces
JO  - Zapiski Nauchnykh Seminarov POMI
PY  - 2015
SP  - 57
EP  - 67
VL  - 440
UR  - http://geodesic.mathdoc.fr/item/ZNSL_2015_440_a4/
LA  - ru
ID  - ZNSL_2015_440_a4
ER  - 
%0 Journal Article
%A Yu. V. Dymchenko
%T The condition of smallness of girth on Sub-Finsler spaces
%J Zapiski Nauchnykh Seminarov POMI
%D 2015
%P 57-67
%V 440
%U http://geodesic.mathdoc.fr/item/ZNSL_2015_440_a4/
%G ru
%F ZNSL_2015_440_a4
Yu. V. Dymchenko. The condition of smallness of girth on Sub-Finsler spaces. Zapiski Nauchnykh Seminarov POMI, Analytical theory of numbers and theory of functions. Part 30, Tome 440 (2015), pp. 57-67. http://geodesic.mathdoc.fr/item/ZNSL_2015_440_a4/

[1] V. N. Berestovskii, Odnorodnye prostranstva s vnutrennei metrikoi i subfinslerovy mnogoobraziya. Nauchnyi seminar, http://gct.math.nsc.ru/?p=2632

[2] V. N. Berestovskii, “Universalnye metody poiska normalnykh geodezicheskikh na gruppakh Li s levoinvariantnoi subrimanovoi metrikoi”, Sib. mat. zh., 55:5 (2014), 959–970 | MR

[3] A. V. Bukusheva, “Sloeniya na raspredeleniyakh s finslerovoi metrikoi”, Izv. Sarat. un-ta. Nov. ser. Ser. Matematika. Mekhanika. Informatika, 14:3 (2014), 247–251 | Zbl

[4] S. Vodopyanov, A. Ukhlov, “Prostranstva Soboleva i $(P,Q)$-kvazikonformnye otobrazheniya grupp Karno”, Sib. mat. zh., 39:4 (1998), 776–795 | MR | Zbl

[5] S. K. Vodopyanov, “Teoriya potentsiala na odnorodnykh gruppakh”, Mat. sb., 180:1 (1989), 57–77 | MR | Zbl

[6] S. K. Vodopyanov, “Monotonnye funktsii i kvazikonformnye otobrazheniya na gruppakh Karno”, Sib. mat. zh., 37:6 (1996), 1269–1295 | MR | Zbl

[7] I. N. Demshin, Yu. V. Dymchenko, V. A. Shlyk, “Kriterii nul-mnozhestv dlya vesovykh sobolevskikh prostranstv”, Zap. nauchn. semin. POMI, 276, 2001, 52–82 | MR | Zbl

[8] Yu. V. Dymchenko, “Uslovie malosti obkhvata v finslerovom prostranstve”, Zap. nauchn. semin. POMI, 429, 2014, 55–63

[9] Yu. V. Dymchenko, Ravenstvo emkosti i modulya kondensatora v subfinslerovom prostranstve, arXiv: 1504.07982

[10] I. P. Natanson, Teoriya funktsii veschestvennoi peremennoi, Lan, SPb., 1999

[11] V. A. Shlyk, “Uslovie $\varepsilon$-obkhvata dlya $N$-kompaktov”, Zap. nauchn. semin. POMI, 196, 1991, 154–161 | MR

[12] L. Ahlfors, A. Beurling, “Conformal invariants and function-theoretic null-sets”, Acta Math., 83 (1950), 101–129 | DOI | MR | Zbl

[13] D. Cibotaru, J. de Lira, A note on the area and coarea formulas, arXiv: 1305.2968

[14] J. N. Clelland, C. G. Moseley, “Sub-Finsler geometry in dimension three”, Differential Geom. Appl., 24:6 (2006), 628–651 | DOI | MR | Zbl

[15] E. L. Donne, A metric characterization of Carnot groups, arXiv: 1304.7493v2

[16] G. Folland, E. Stein, Hardy Spaces on Homogeneous Groups, Mathematical Notes, 28, Princeton University Press, Princeton, 1982 | MR | Zbl

[17] V. Magnani, “On a general coarea inequality and applications”, Ann. Acad. Sci. Fenn. Math., 27 (2002), 121–140 | MR | Zbl

[18] J. Mitchell, “On Carnot-Caratheodory metrics”, J. Differential Geom., 21:1 (1985), 35–45 | MR | Zbl