The module method in certain general extremal decomposition problem
Zapiski Nauchnykh Seminarov POMI, Analytical theory of numbers and theory of functions. Part 30, Tome 440 (2015), pp. 170-186 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice du chapitre de livre

Results of the module method are extended on extremal decomposition problems for which associated quadratic differentials have poles of arbitrary orders.
@article{ZNSL_2015_440_a11,
     author = {G. V. Kuz'mina},
     title = {The module method in certain general extremal decomposition problem},
     journal = {Zapiski Nauchnykh Seminarov POMI},
     pages = {170--186},
     year = {2015},
     volume = {440},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZNSL_2015_440_a11/}
}
TY  - JOUR
AU  - G. V. Kuz'mina
TI  - The module method in certain general extremal decomposition problem
JO  - Zapiski Nauchnykh Seminarov POMI
PY  - 2015
SP  - 170
EP  - 186
VL  - 440
UR  - http://geodesic.mathdoc.fr/item/ZNSL_2015_440_a11/
LA  - ru
ID  - ZNSL_2015_440_a11
ER  - 
%0 Journal Article
%A G. V. Kuz'mina
%T The module method in certain general extremal decomposition problem
%J Zapiski Nauchnykh Seminarov POMI
%D 2015
%P 170-186
%V 440
%U http://geodesic.mathdoc.fr/item/ZNSL_2015_440_a11/
%G ru
%F ZNSL_2015_440_a11
G. V. Kuz'mina. The module method in certain general extremal decomposition problem. Zapiski Nauchnykh Seminarov POMI, Analytical theory of numbers and theory of functions. Part 30, Tome 440 (2015), pp. 170-186. http://geodesic.mathdoc.fr/item/ZNSL_2015_440_a11/

[1] J. A. Jenkins, Univalent functions and conformal mapping, Ergeb. Math. Grenzeb. (N.S.), 18, Springer-Verlag, 1958 ; 2nd. ed. corrected, 1965; Odnolistnye funktsii i konformnye otobrazheniya, M., 1962 | MR | Zbl

[2] J. A. Jenkins, “A general coefficient theorem”, Trans. Amer. Math. Soc., 77 (1954), 262–280 | DOI | MR | Zbl

[3] J. A. Jenkins, “An extension of the general coefficient theorem”, Trans. Amer. Math. Soc., 95 (1960), 387–407 | DOI | MR | Zbl

[4] J. A. Jenkins, “The method of the extremal metric”, Handbook of complex analysis: geometric function theory, v. 1, North-Holland, Amsterdam, 2002, 393–456 | DOI | MR | Zbl

[5] J. A. Jenkins, “On the existence of certain general extremal metrics”, Ann. Math. (2), 65 (1957), 440–453 | DOI | MR

[6] J. A. Jenkins, “On the existence of certain general extremal metrics. II”, Tohoku Math. J. (2), 45:2 (1993), 249–257 | DOI | MR | Zbl

[7] G. V. Kuzmina, “Obschaya teorema koeffitsientov Dzhenkinsa m metod modulei semeistv krivykh”, Zap. nauchn. semin. POMI, 429, 2014, 140–156

[8] G. V. Kuzmina, “Moduli semeistv krivykh i kvadratichnye differentsialy”, Trudy Mat. in-ta AN SSSR, 139, 1980, 1–243 | MR

[9] E. G. Emelyanov, “K zadacham ob ekstremalnom razbienii”, Zap. nauchn. semin. LOMI, 154, 1986, 76–89 | MR | Zbl

[10] E. G. Emelyanov, G. V. Kuzmina, “Teoremy ob ekstremalnom razbienii v semeistvakh sistem oblastei razlichnykh tipov”, Zap. nauchn. semin. LOMI, 237, 1997, 74–104 | MR | Zbl

[11] A. Yu. Solynin, “Moduli i ekstremalno-metricheskie problemy”, Algebra i analiz, 11:1 (1999), 3–86 | MR | Zbl

[12] G. V. Kuzmina, “Zadachi ob ekstremalnom razbienii i otsenki koeffitsientov v klasse $\Sigma(r)$”, Zap. nauchn. semin. POMI, 196, 1991, 101–116 | MR

[13] G. V. Kuzmina, “Metod modulei i ekstremalnye zadachi v klasse $\Sigma(r)$”, Zap. nauchn. semin. POMI, 418, 2013, 136–152