Polarization and circular truncation of a domain
Zapiski Nauchnykh Seminarov POMI, Analytical theory of numbers and theory of functions. Part 30, Tome 440 (2015), pp. 162-169
Voir la notice du chapitre de livre
Difference of the reduced module $m(D)$ of a simply connected domain $D$ with respect to $z=0$ and the reduced module $m(D_r)$ of its circular truncation, where $D_r$ is the connected component of the set $D\cap\{\left|z\right|, containing the point $z=0$, is considered. It is proved that in the case of polarization and circular symmetrization of the domain $D$ this difference does not decrease.
@article{ZNSL_2015_440_a10,
author = {V. O. Kuznetsov},
title = {Polarization and circular truncation of a~domain},
journal = {Zapiski Nauchnykh Seminarov POMI},
pages = {162--169},
year = {2015},
volume = {440},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/ZNSL_2015_440_a10/}
}
V. O. Kuznetsov. Polarization and circular truncation of a domain. Zapiski Nauchnykh Seminarov POMI, Analytical theory of numbers and theory of functions. Part 30, Tome 440 (2015), pp. 162-169. http://geodesic.mathdoc.fr/item/ZNSL_2015_440_a10/
[1] A. Yu. Solynin, “Minimizatsiya konformnogo radiusa pri krugovom suzhenii oblasti”, Zap. nauchn. semin. POMI, 254, 1998, 145–164 | MR
[2] V. N. Dubinin, “Simmetrizatsiya v geometricheskoi teorii funktsii kompleksnogo peremennogo”, Uspekhi mat. nauk, 49 (1994), 13–76 | MR
[3] A. Yu. Solynin, “Polyarizatsiya i funktsionalnye neravenstva”, Algebra i analiz, 8:6 (1996), 148–185 | MR | Zbl
[4] V. O. Kuznetsov, “O geometricheskikh svoistvakh ekstremalnykh razbienii”, Zap. nauchn. semin. POMI, 418, 2013, 121–135