Polarization and circular truncation of a~domain
Zapiski Nauchnykh Seminarov POMI, Analytical theory of numbers and theory of functions. Part 30, Tome 440 (2015), pp. 162-169

Voir la notice de l'article provenant de la source Math-Net.Ru

Difference of the reduced module $m(D)$ of a simply connected domain $D$ with respect to $z=0$ and the reduced module $m(D_r)$ of its circular truncation, where $D_r$ is the connected component of the set $D\cap\{\left|z\right|$, containing the point $z=0$, is considered. It is proved that in the case of polarization and circular symmetrization of the domain $D$ this difference does not decrease.
@article{ZNSL_2015_440_a10,
     author = {V. O. Kuznetsov},
     title = {Polarization and circular truncation of a~domain},
     journal = {Zapiski Nauchnykh Seminarov POMI},
     pages = {162--169},
     publisher = {mathdoc},
     volume = {440},
     year = {2015},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZNSL_2015_440_a10/}
}
TY  - JOUR
AU  - V. O. Kuznetsov
TI  - Polarization and circular truncation of a~domain
JO  - Zapiski Nauchnykh Seminarov POMI
PY  - 2015
SP  - 162
EP  - 169
VL  - 440
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/ZNSL_2015_440_a10/
LA  - ru
ID  - ZNSL_2015_440_a10
ER  - 
%0 Journal Article
%A V. O. Kuznetsov
%T Polarization and circular truncation of a~domain
%J Zapiski Nauchnykh Seminarov POMI
%D 2015
%P 162-169
%V 440
%I mathdoc
%U http://geodesic.mathdoc.fr/item/ZNSL_2015_440_a10/
%G ru
%F ZNSL_2015_440_a10
V. O. Kuznetsov. Polarization and circular truncation of a~domain. Zapiski Nauchnykh Seminarov POMI, Analytical theory of numbers and theory of functions. Part 30, Tome 440 (2015), pp. 162-169. http://geodesic.mathdoc.fr/item/ZNSL_2015_440_a10/