Neutral subspaces of complex matrices
    
    
  
  
  
      
      
      
        
Zapiski Nauchnykh Seminarov POMI, Computational methods and algorithms. Part XXVIII, Tome 439 (2015), pp. 93-98
    
  
  
  
  
  
    
      
      
        
      
      
      
    Voir la notice de l'article provenant de la source Math-Net.Ru
            
              			Consider the quadratic matrix equation $X^TDX+AX+X^TB+C=0$, where all the matrices are square and have the same order $n$. With this equation, we associate a block matrix $M$ of the double order $2n$. the solvability of the equation turns out to be related to the existence of neutral subspaces of dimension $n$ for this matrix. Reasonably general conditions ensuring the existence of such subspaces are presented.
			
            
            
            
          
        
      @article{ZNSL_2015_439_a7,
     author = {Kh. D. Ikramov},
     title = {Neutral subspaces of complex matrices},
     journal = {Zapiski Nauchnykh Seminarov POMI},
     pages = {93--98},
     publisher = {mathdoc},
     volume = {439},
     year = {2015},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZNSL_2015_439_a7/}
}
                      
                      
                    Kh. D. Ikramov. Neutral subspaces of complex matrices. Zapiski Nauchnykh Seminarov POMI, Computational methods and algorithms. Part XXVIII, Tome 439 (2015), pp. 93-98. http://geodesic.mathdoc.fr/item/ZNSL_2015_439_a7/