Sharp estimates of the first coefficients for a class of typically real functions
Zapiski Nauchnykh Seminarov POMI, Computational methods and algorithms. Part XXVIII, Tome 439 (2015), pp. 38-46
Cet article a éte moissonné depuis la source Math-Net.Ru
Let $T$ be the class of functions $f(z)=z+\sum_{n=2}^\infty c_nz^n$ regular and typically real in the disk $U=|z|<1$. Sharp estimates on the coefficients $c_5$ and $c_6$ in terms of the values $f(r)$, $0, are obtained.
@article{ZNSL_2015_439_a3,
author = {E. G. Goluzina},
title = {Sharp estimates of the first coefficients for a~class of typically real functions},
journal = {Zapiski Nauchnykh Seminarov POMI},
pages = {38--46},
year = {2015},
volume = {439},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/ZNSL_2015_439_a3/}
}
E. G. Goluzina. Sharp estimates of the first coefficients for a class of typically real functions. Zapiski Nauchnykh Seminarov POMI, Computational methods and algorithms. Part XXVIII, Tome 439 (2015), pp. 38-46. http://geodesic.mathdoc.fr/item/ZNSL_2015_439_a3/