Sharp estimates of the first coefficients for a~class of typically real functions
    
    
  
  
  
      
      
      
        
Zapiski Nauchnykh Seminarov POMI, Computational methods and algorithms. Part XXVIII, Tome 439 (2015), pp. 38-46
    
  
  
  
  
  
    
      
      
        
      
      
      
    Voir la notice de l'article provenant de la source Math-Net.Ru
            
              			Let $T$ be the class of functions $f(z)=z+\sum_{n=2}^\infty c_nz^n$ regular and typically real in the disk $U=|z|1$. Sharp estimates on the coefficients $c_5$ and $c_6$ in terms of the values $f(r)$, $0$, are obtained.
			
            
            
            
          
        
      @article{ZNSL_2015_439_a3,
     author = {E. G. Goluzina},
     title = {Sharp estimates of the first coefficients for a~class of typically real functions},
     journal = {Zapiski Nauchnykh Seminarov POMI},
     pages = {38--46},
     publisher = {mathdoc},
     volume = {439},
     year = {2015},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZNSL_2015_439_a3/}
}
                      
                      
                    E. G. Goluzina. Sharp estimates of the first coefficients for a~class of typically real functions. Zapiski Nauchnykh Seminarov POMI, Computational methods and algorithms. Part XXVIII, Tome 439 (2015), pp. 38-46. http://geodesic.mathdoc.fr/item/ZNSL_2015_439_a3/