Sharp estimates of the first coefficients for a class of typically real functions
Zapiski Nauchnykh Seminarov POMI, Computational methods and algorithms. Part XXVIII, Tome 439 (2015), pp. 38-46 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice du chapitre de livre

Let $T$ be the class of functions $f(z)=z+\sum_{n=2}^\infty c_nz^n$ regular and typically real in the disk $U=|z|<1$. Sharp estimates on the coefficients $c_5$ and $c_6$ in terms of the values $f(r)$, $0, are obtained.
@article{ZNSL_2015_439_a3,
     author = {E. G. Goluzina},
     title = {Sharp estimates of the first coefficients for a~class of typically real functions},
     journal = {Zapiski Nauchnykh Seminarov POMI},
     pages = {38--46},
     year = {2015},
     volume = {439},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZNSL_2015_439_a3/}
}
TY  - JOUR
AU  - E. G. Goluzina
TI  - Sharp estimates of the first coefficients for a class of typically real functions
JO  - Zapiski Nauchnykh Seminarov POMI
PY  - 2015
SP  - 38
EP  - 46
VL  - 439
UR  - http://geodesic.mathdoc.fr/item/ZNSL_2015_439_a3/
LA  - ru
ID  - ZNSL_2015_439_a3
ER  - 
%0 Journal Article
%A E. G. Goluzina
%T Sharp estimates of the first coefficients for a class of typically real functions
%J Zapiski Nauchnykh Seminarov POMI
%D 2015
%P 38-46
%V 439
%U http://geodesic.mathdoc.fr/item/ZNSL_2015_439_a3/
%G ru
%F ZNSL_2015_439_a3
E. G. Goluzina. Sharp estimates of the first coefficients for a class of typically real functions. Zapiski Nauchnykh Seminarov POMI, Computational methods and algorithms. Part XXVIII, Tome 439 (2015), pp. 38-46. http://geodesic.mathdoc.fr/item/ZNSL_2015_439_a3/