On divisibility for the permanents of $(\pm1)$-matrices
Zapiski Nauchnykh Seminarov POMI, Computational methods and algorithms. Part XXVIII, Tome 439 (2015), pp. 26-37
Cet article a éte moissonné depuis la source Math-Net.Ru
The classical results by Kräuter and Seifter concerning the divisibility of permanents for $(\pm1)$-matrices by large powers of $2$ are useful in testing whether the permanent is a nonvanishing function. In this paper, a new approach to this problem, which allows one to obtain a short combinatorial proof of the results by Kräuter and Seifter, is suggested.
@article{ZNSL_2015_439_a2,
author = {M. V. Budrevich and A. E. Guterman and K. A. Taranin},
title = {On divisibility for the permanents of $(\pm1)$-matrices},
journal = {Zapiski Nauchnykh Seminarov POMI},
pages = {26--37},
year = {2015},
volume = {439},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/ZNSL_2015_439_a2/}
}
M. V. Budrevich; A. E. Guterman; K. A. Taranin. On divisibility for the permanents of $(\pm1)$-matrices. Zapiski Nauchnykh Seminarov POMI, Computational methods and algorithms. Part XXVIII, Tome 439 (2015), pp. 26-37. http://geodesic.mathdoc.fr/item/ZNSL_2015_439_a2/