Combinatorial and spectral properties of semigroups of stochastic matrices
Zapiski Nauchnykh Seminarov POMI, Computational methods and algorithms. Part XXVIII, Tome 439 (2015), pp. 13-25
Cet article a éte moissonné depuis la source Math-Net.Ru
The paper studies the notion of imprimitivity index of a semigroup of nonnegative matrices, introduced by Protasov and Voynov. A new characterization of the imprimitivity index in terms of the scrambling rank of a nonnegative matrix is suggested. Based on this characterization, an independent combinatorial proof of the Protasov–Voynov theorem on the interrelation between the imprimitivity index of a semigroup of stohastic matrices and the spectral properties of matrices in the semigroup is presented.
@article{ZNSL_2015_439_a1,
author = {Yu. A. Al'pin and V. S. Al'pina},
title = {Combinatorial and spectral properties of semigroups of stochastic matrices},
journal = {Zapiski Nauchnykh Seminarov POMI},
pages = {13--25},
year = {2015},
volume = {439},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/ZNSL_2015_439_a1/}
}
Yu. A. Al'pin; V. S. Al'pina. Combinatorial and spectral properties of semigroups of stochastic matrices. Zapiski Nauchnykh Seminarov POMI, Computational methods and algorithms. Part XXVIII, Tome 439 (2015), pp. 13-25. http://geodesic.mathdoc.fr/item/ZNSL_2015_439_a1/