@article{ZNSL_2015_438_a9,
author = {A. P. Kiselev},
title = {General surface waves in layered anisotropic elastic structures},
journal = {Zapiski Nauchnykh Seminarov POMI},
pages = {133--137},
year = {2015},
volume = {438},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/ZNSL_2015_438_a9/}
}
A. P. Kiselev. General surface waves in layered anisotropic elastic structures. Zapiski Nauchnykh Seminarov POMI, Mathematical problems in the theory of wave propagation. Part 45, Tome 438 (2015), pp. 133-137. http://geodesic.mathdoc.fr/item/ZNSL_2015_438_a9/
[1] A. P. Kiselev, “Rayleigh wave with a transverse structure”, Proc. R. Soc. London Ser. A, 460 (2004), 3059–3064 | DOI | MR | Zbl
[2] A. P. Kiselev, A. M. Tagirdzhanov, “Lyavovskie volny s poperechnoi strukturoi”, Vestnik Sankt-Peterburgskogo universiteta. Seriya 1. Matematika. Mekhanika. Astronomiya, 2008, no. 3, 456–789
[3] A. P. Kiselev, “Ploskie volny s poperechnoi strukturoi v proizvolno anizotropnoi uprugoi srede.”, Doklady Akademii nauk, 418:3 (2008), 336–338 | MR | Zbl
[4] V. M. Babich, A. P. Kiselev, “Nongeometrical phenomena in propagation of elastic surface waves”, Surface Waves in Anisotropic and Laminated Bodies and Defects Detection, eds. R. V. Goldstein, G. A. Maugin, Kluwer, 2004, 119–129 | MR | Zbl
[5] D. F. Parker, A. P. Kiselev, “Rayleigh waves having generalized lateral dependence”, Quart. J. Mech. Appl. Math., 62 (2009), 19–29 | DOI | MR
[6] A. P. Kiselev, G. A. Rogerson, “Laterally dependent surface waves in an elastic medium with a general depth dependence”, Wave Motion, 46 (2009), 539–547 | DOI | MR | Zbl
[7] A. P. Kiselev, E. Ducasse, M. Deschamps, A. Darinskii, “Novel exact surface wave solutions for layered structures”, Comptes Rendus Mécanique, 335 (2007), 419–422 | DOI | Zbl
[8] N. Ya. Kirpichnikova, “O postroenii sosredotochennykh vblizi luchei reshenii uravnenii teorii uprugosti dlya neodnorodnogo izotropnogo prostranstva”, Tr. MIAN SSSR, 115, 1971, 103–113 | Zbl
[9] J. Kaplunov, A. Zakharov, D. A. Prikazchikov, “Explicit models for elastic and piezoelastic surface waves”, IMA J. Appl. Math., 71 (2006), 768–782 | DOI | MR | Zbl
[10] D. A. Prikazchikov, “Rayleigh waves of arbitrary profile in anisotropic media”, Mech. Res. Commun., 50 (2013), 83–86 | DOI | MR
[11] A. P. Kiselev, D. F. Parker, “ Omni-directional Rayleigh, Stoneley and Schölte waves with general time-dependence”, Proc. Roy. Soc. London, Ser. A, 466 (2010), 2241–2258 | DOI | MR | Zbl
[12] J. D. Achenbach, “Lamb waves as thickness vibrations superimposed on a membrane carrier wave”, J. Acoust. Soc. Am., 103 (1998), 2283–2286 | DOI
[13] J. D. Achenbach, “Explicit solutions for carrier waves supporting surface and plate waves”, Wave Motion, 28 (1998), 89–97 | DOI | MR | Zbl
[14] D. F. Parker, “Waves and statics for functionally graded materials and laminates”, Int. J. Eng. Sci., 47 (2009), 1315–1321 | DOI | MR | Zbl
[15] V. M. Babich, A. P. Kiselev, Uprugie volny. Vysokochastotnaya teoriya, BKhV-Peterburg, SPb., 2014