General surface waves in layered anisotropic elastic structures
Zapiski Nauchnykh Seminarov POMI, Mathematical problems in the theory of wave propagation. Part 45, Tome 438 (2015), pp. 133-137 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice du chapitre de livre

A solution of homogeneous equations of elasticity equations describing surface waves and based on summation of plane waves is presented.
@article{ZNSL_2015_438_a9,
     author = {A. P. Kiselev},
     title = {General surface waves in layered anisotropic elastic structures},
     journal = {Zapiski Nauchnykh Seminarov POMI},
     pages = {133--137},
     year = {2015},
     volume = {438},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZNSL_2015_438_a9/}
}
TY  - JOUR
AU  - A. P. Kiselev
TI  - General surface waves in layered anisotropic elastic structures
JO  - Zapiski Nauchnykh Seminarov POMI
PY  - 2015
SP  - 133
EP  - 137
VL  - 438
UR  - http://geodesic.mathdoc.fr/item/ZNSL_2015_438_a9/
LA  - ru
ID  - ZNSL_2015_438_a9
ER  - 
%0 Journal Article
%A A. P. Kiselev
%T General surface waves in layered anisotropic elastic structures
%J Zapiski Nauchnykh Seminarov POMI
%D 2015
%P 133-137
%V 438
%U http://geodesic.mathdoc.fr/item/ZNSL_2015_438_a9/
%G ru
%F ZNSL_2015_438_a9
A. P. Kiselev. General surface waves in layered anisotropic elastic structures. Zapiski Nauchnykh Seminarov POMI, Mathematical problems in the theory of wave propagation. Part 45, Tome 438 (2015), pp. 133-137. http://geodesic.mathdoc.fr/item/ZNSL_2015_438_a9/

[1] A. P. Kiselev, “Rayleigh wave with a transverse structure”, Proc. R. Soc. London Ser. A, 460 (2004), 3059–3064 | DOI | MR | Zbl

[2] A. P. Kiselev, A. M. Tagirdzhanov, “Lyavovskie volny s poperechnoi strukturoi”, Vestnik Sankt-Peterburgskogo universiteta. Seriya 1. Matematika. Mekhanika. Astronomiya, 2008, no. 3, 456–789

[3] A. P. Kiselev, “Ploskie volny s poperechnoi strukturoi v proizvolno anizotropnoi uprugoi srede.”, Doklady Akademii nauk, 418:3 (2008), 336–338 | MR | Zbl

[4] V. M. Babich, A. P. Kiselev, “Nongeometrical phenomena in propagation of elastic surface waves”, Surface Waves in Anisotropic and Laminated Bodies and Defects Detection, eds. R. V. Goldstein, G. A. Maugin, Kluwer, 2004, 119–129 | MR | Zbl

[5] D. F. Parker, A. P. Kiselev, “Rayleigh waves having generalized lateral dependence”, Quart. J. Mech. Appl. Math., 62 (2009), 19–29 | DOI | MR

[6] A. P. Kiselev, G. A. Rogerson, “Laterally dependent surface waves in an elastic medium with a general depth dependence”, Wave Motion, 46 (2009), 539–547 | DOI | MR | Zbl

[7] A. P. Kiselev, E. Ducasse, M. Deschamps, A. Darinskii, “Novel exact surface wave solutions for layered structures”, Comptes Rendus Mécanique, 335 (2007), 419–422 | DOI | Zbl

[8] N. Ya. Kirpichnikova, “O postroenii sosredotochennykh vblizi luchei reshenii uravnenii teorii uprugosti dlya neodnorodnogo izotropnogo prostranstva”, Tr. MIAN SSSR, 115, 1971, 103–113 | Zbl

[9] J. Kaplunov, A. Zakharov, D. A. Prikazchikov, “Explicit models for elastic and piezoelastic surface waves”, IMA J. Appl. Math., 71 (2006), 768–782 | DOI | MR | Zbl

[10] D. A. Prikazchikov, “Rayleigh waves of arbitrary profile in anisotropic media”, Mech. Res. Commun., 50 (2013), 83–86 | DOI | MR

[11] A. P. Kiselev, D. F. Parker, “ Omni-directional Rayleigh, Stoneley and Schölte waves with general time-dependence”, Proc. Roy. Soc. London, Ser. A, 466 (2010), 2241–2258 | DOI | MR | Zbl

[12] J. D. Achenbach, “Lamb waves as thickness vibrations superimposed on a membrane carrier wave”, J. Acoust. Soc. Am., 103 (1998), 2283–2286 | DOI

[13] J. D. Achenbach, “Explicit solutions for carrier waves supporting surface and plate waves”, Wave Motion, 28 (1998), 89–97 | DOI | MR | Zbl

[14] D. F. Parker, “Waves and statics for functionally graded materials and laminates”, Int. J. Eng. Sci., 47 (2009), 1315–1321 | DOI | MR | Zbl

[15] V. M. Babich, A. P. Kiselev, Uprugie volny. Vysokochastotnaya teoriya, BKhV-Peterburg, SPb., 2014