The ray type solution for the wave of finite deformation in the physically linear nonlinear inhomogeneous elastic medium
Zapiski Nauchnykh Seminarov POMI, Mathematical problems in the theory of wave propagation. Part 45, Tome 438 (2015), pp. 118-132 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice du chapitre de livre

The paper is devoted to the ray types of finite deformation waves in the nonlinear, physically linear elastic media. The waves are a generalization of the Bland plane waves for the isotropic nonlinear media. For the waves the fast oscillation and slow oscillation parts are interacted during the process of propagation. Forms of the waves are adiabatically changed. An example of plane wave in the inhomogeneous media is considered.
@article{ZNSL_2015_438_a8,
     author = {A. P. Kachalov},
     title = {The ray type solution for the wave of finite deformation in the physically linear nonlinear inhomogeneous elastic medium},
     journal = {Zapiski Nauchnykh Seminarov POMI},
     pages = {118--132},
     year = {2015},
     volume = {438},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZNSL_2015_438_a8/}
}
TY  - JOUR
AU  - A. P. Kachalov
TI  - The ray type solution for the wave of finite deformation in the physically linear nonlinear inhomogeneous elastic medium
JO  - Zapiski Nauchnykh Seminarov POMI
PY  - 2015
SP  - 118
EP  - 132
VL  - 438
UR  - http://geodesic.mathdoc.fr/item/ZNSL_2015_438_a8/
LA  - ru
ID  - ZNSL_2015_438_a8
ER  - 
%0 Journal Article
%A A. P. Kachalov
%T The ray type solution for the wave of finite deformation in the physically linear nonlinear inhomogeneous elastic medium
%J Zapiski Nauchnykh Seminarov POMI
%D 2015
%P 118-132
%V 438
%U http://geodesic.mathdoc.fr/item/ZNSL_2015_438_a8/
%G ru
%F ZNSL_2015_438_a8
A. P. Kachalov. The ray type solution for the wave of finite deformation in the physically linear nonlinear inhomogeneous elastic medium. Zapiski Nauchnykh Seminarov POMI, Mathematical problems in the theory of wave propagation. Part 45, Tome 438 (2015), pp. 118-132. http://geodesic.mathdoc.fr/item/ZNSL_2015_438_a8/

[1] V. V. Novozhilov, Osnovy nelineinoi teorii uprugosti, Gostekhizdat, L.–M., 1948, 324 pp.

[2] L. I. Lure, Nelineinaya teoriya uprugosti, Nauka, M., 1980, 512 pp. | MR

[3] A. P. Kachalov, “Prostranstvenno-vremennoi luchevoi metod dlya voln maloi deformatsii v nelineinoi uprugoi srede”, Zap. nauchn. semin. LOMI, 140, 1984, 61–72 | MR | Zbl

[4] D. R. Bland, Nonlinear Dynamic Elasticity, Blaisdal Publishing Company, Wolflam, 1969 | MR | Zbl