On inverse source problem for wave equation
Zapiski Nauchnykh Seminarov POMI, Mathematical problems in the theory of wave propagation. Part 45, Tome 438 (2015), pp. 104-117 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice du chapitre de livre

We study the question of identification of initial data in the Cauchy problem for the wave equation with variable velocity. The wave field on some surface in the time-space is assumed to be known. Under some assumptions concerning the velocity it is shown that some part of singularities of initial data can be recovered.
@article{ZNSL_2015_438_a7,
     author = {M. N. Demchenko},
     title = {On inverse source problem for wave equation},
     journal = {Zapiski Nauchnykh Seminarov POMI},
     pages = {104--117},
     year = {2015},
     volume = {438},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZNSL_2015_438_a7/}
}
TY  - JOUR
AU  - M. N. Demchenko
TI  - On inverse source problem for wave equation
JO  - Zapiski Nauchnykh Seminarov POMI
PY  - 2015
SP  - 104
EP  - 117
VL  - 438
UR  - http://geodesic.mathdoc.fr/item/ZNSL_2015_438_a7/
LA  - ru
ID  - ZNSL_2015_438_a7
ER  - 
%0 Journal Article
%A M. N. Demchenko
%T On inverse source problem for wave equation
%J Zapiski Nauchnykh Seminarov POMI
%D 2015
%P 104-117
%V 438
%U http://geodesic.mathdoc.fr/item/ZNSL_2015_438_a7/
%G ru
%F ZNSL_2015_438_a7
M. N. Demchenko. On inverse source problem for wave equation. Zapiski Nauchnykh Seminarov POMI, Mathematical problems in the theory of wave propagation. Part 45, Tome 438 (2015), pp. 104-117. http://geodesic.mathdoc.fr/item/ZNSL_2015_438_a7/

[1] V. M. Babich, V. S. Buldyrev, I. A. Molotkov, Prostranstvenno-vremennoi luchevoi metod: lineinye i nelineinye volny, Izd-vo LGU, Leningrad, 1985 | MR

[2] C. Bardos, G. Lebeau, J. Rauch, “Sharp sufficient conditions for the observation, control, and stabilization of waves from the boundary”, SIAM J. Contr. Opt., 30 (1992), 1024–1065 | DOI | MR | Zbl

[3] A. Kh. Begmatov, “A Certain Inversion Problem for the Ray Transform with Incomplete Data”, Siberian Math. J., 42:3 (2001), 428–434 | DOI | MR | Zbl

[4] M. I. Belishev, “Boundary control in reconstruction of manifolds and metrics (the BC method)”, Inverse Problems, 13 (1997), R1–R45 | DOI | MR | Zbl

[5] G. Beylkin, “The Inversion problem and applications for the generalized radon transform.”, Comm. Pure Appl. Math., 37 (1984), 579–599 | DOI | MR | Zbl

[6] M. N. Demchenko, Asymptotic behavior of singular values of the acoustic observation problem, 2015, arXiv: 1506.05563[math.SP]

[7] J. J. Duistermaat, Fourier integral operators, Birkhäuser, Boston, 2011 | MR | Zbl

[8] J. Frikel, E. T. Quinto, Artifacts in incomplete data tomography with applications to photoacoustic tomography and sonar, 2014, arXiv: 1407.3453v4[math.AP] | MR

[9] V. Guillemin, S. Sternberg, “Some problems in integral geometry and some related problems in micro-local analysis”, Amer. J. Math., 101:4 (1979), 915–955 | DOI | MR | Zbl

[10] L. Hörmander, The Analysis of Linear Partial Differential Operators, v. IV, Fourier Integral Operators, Classics in Mathematics, Springer-Verlag, Berlin–Heidelberg, 2009 | MR | Zbl

[11] A. P. E. ten Kroode, D.-J. Smit, A. R. Verdel, “A microlocal analysis of migration”, Wave Motion, 28 (1998), 149–172 | DOI | MR | Zbl

[12] A. K. Louis, “Incomplete data problems in X-ray computerized tomography”, Numer. Math., 48 (1986), 251–262 | DOI | MR | Zbl

[13] V. P. Maslov, Théorie des Perturbations et des Méthodes Asymptotiques, Dunod, Paris, 1972

[14] A. S. Mikhailov, V. S. Mikhailov, “Uravneniya metoda Granichnogo Upravleniya dlya obratnoi zadachi ob opredelenii istochnika”, Zap. nauchn. semin. POMI, 409, 2012, 121–129

[15] F. Natterer, The Mathematics of Computerized Tomography, SIAM's Classics in Applied Mathematics, 32, Philadelphia, 2001 | MR | Zbl

[16] L. V. Nguyen, On Artifacts in Limited Data Spherical Radon Transform. I: Flat Observation Surfaces, arXiv: 1407.4496[math.CA] | MR

[17] V. P. Palamodov, “Reconstruction from Limited Data of Arc Means”, J. Fourier Analysis Appl., 6:1 (2000), 25–42 | DOI | MR | Zbl

[18] M. M. Popov, Ray Theory and Gaussian Beam for Geophysicists, EDUFBA, Salvador-Bahia, 2002

[19] P. Stefanov, G. Uhlmann, “Is a curved flight path in SAR better than a straight one?”, SIAM J. Appl. Math., 73:4 (2013), 1596–1612 | DOI | MR | Zbl

[20] I. Stein, Singulyarnye integraly i differentsialnye svoistva funktsii, Mir, Moskva, 1973 | MR

[21] Ch. C. Stolk, M. V. de Hoop, “Microlocal Analysis of Seismic Inverse Scattering in Anisotropic Elastic Media”, Commun. Pure Appl. Math., 55 (2002), 0261–0301 | DOI | MR

[22] M. Teilor, Psevdodifferentsialnye operatory, Mir, Moskva, 1985 | MR

[23] F. Treves, Introduction to pseudodifferential and Fourier integral operators, v. 2, University Series in Mathematics, Plenum, New York, 1980 | MR | Zbl