@article{ZNSL_2015_438_a7,
author = {M. N. Demchenko},
title = {On inverse source problem for wave equation},
journal = {Zapiski Nauchnykh Seminarov POMI},
pages = {104--117},
year = {2015},
volume = {438},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/ZNSL_2015_438_a7/}
}
M. N. Demchenko. On inverse source problem for wave equation. Zapiski Nauchnykh Seminarov POMI, Mathematical problems in the theory of wave propagation. Part 45, Tome 438 (2015), pp. 104-117. http://geodesic.mathdoc.fr/item/ZNSL_2015_438_a7/
[1] V. M. Babich, V. S. Buldyrev, I. A. Molotkov, Prostranstvenno-vremennoi luchevoi metod: lineinye i nelineinye volny, Izd-vo LGU, Leningrad, 1985 | MR
[2] C. Bardos, G. Lebeau, J. Rauch, “Sharp sufficient conditions for the observation, control, and stabilization of waves from the boundary”, SIAM J. Contr. Opt., 30 (1992), 1024–1065 | DOI | MR | Zbl
[3] A. Kh. Begmatov, “A Certain Inversion Problem for the Ray Transform with Incomplete Data”, Siberian Math. J., 42:3 (2001), 428–434 | DOI | MR | Zbl
[4] M. I. Belishev, “Boundary control in reconstruction of manifolds and metrics (the BC method)”, Inverse Problems, 13 (1997), R1–R45 | DOI | MR | Zbl
[5] G. Beylkin, “The Inversion problem and applications for the generalized radon transform.”, Comm. Pure Appl. Math., 37 (1984), 579–599 | DOI | MR | Zbl
[6] M. N. Demchenko, Asymptotic behavior of singular values of the acoustic observation problem, 2015, arXiv: 1506.05563[math.SP]
[7] J. J. Duistermaat, Fourier integral operators, Birkhäuser, Boston, 2011 | MR | Zbl
[8] J. Frikel, E. T. Quinto, Artifacts in incomplete data tomography with applications to photoacoustic tomography and sonar, 2014, arXiv: 1407.3453v4[math.AP] | MR
[9] V. Guillemin, S. Sternberg, “Some problems in integral geometry and some related problems in micro-local analysis”, Amer. J. Math., 101:4 (1979), 915–955 | DOI | MR | Zbl
[10] L. Hörmander, The Analysis of Linear Partial Differential Operators, v. IV, Fourier Integral Operators, Classics in Mathematics, Springer-Verlag, Berlin–Heidelberg, 2009 | MR | Zbl
[11] A. P. E. ten Kroode, D.-J. Smit, A. R. Verdel, “A microlocal analysis of migration”, Wave Motion, 28 (1998), 149–172 | DOI | MR | Zbl
[12] A. K. Louis, “Incomplete data problems in X-ray computerized tomography”, Numer. Math., 48 (1986), 251–262 | DOI | MR | Zbl
[13] V. P. Maslov, Théorie des Perturbations et des Méthodes Asymptotiques, Dunod, Paris, 1972
[14] A. S. Mikhailov, V. S. Mikhailov, “Uravneniya metoda Granichnogo Upravleniya dlya obratnoi zadachi ob opredelenii istochnika”, Zap. nauchn. semin. POMI, 409, 2012, 121–129
[15] F. Natterer, The Mathematics of Computerized Tomography, SIAM's Classics in Applied Mathematics, 32, Philadelphia, 2001 | MR | Zbl
[16] L. V. Nguyen, On Artifacts in Limited Data Spherical Radon Transform. I: Flat Observation Surfaces, arXiv: 1407.4496[math.CA] | MR
[17] V. P. Palamodov, “Reconstruction from Limited Data of Arc Means”, J. Fourier Analysis Appl., 6:1 (2000), 25–42 | DOI | MR | Zbl
[18] M. M. Popov, Ray Theory and Gaussian Beam for Geophysicists, EDUFBA, Salvador-Bahia, 2002
[19] P. Stefanov, G. Uhlmann, “Is a curved flight path in SAR better than a straight one?”, SIAM J. Appl. Math., 73:4 (2013), 1596–1612 | DOI | MR | Zbl
[20] I. Stein, Singulyarnye integraly i differentsialnye svoistva funktsii, Mir, Moskva, 1973 | MR
[21] Ch. C. Stolk, M. V. de Hoop, “Microlocal Analysis of Seismic Inverse Scattering in Anisotropic Elastic Media”, Commun. Pure Appl. Math., 55 (2002), 0261–0301 | DOI | MR
[22] M. Teilor, Psevdodifferentsialnye operatory, Mir, Moskva, 1985 | MR
[23] F. Treves, Introduction to pseudodifferential and Fourier integral operators, v. 2, University Series in Mathematics, Plenum, New York, 1980 | MR | Zbl