@article{ZNSL_2015_438_a6,
author = {A. M. Budylin and S. B. Levin},
title = {To the question of {Schr\"oedinger} operator kernel resolvent asymptotics construction in the three one-dimensional quantum particles scattering problem interacting by finite repulsive pair potentials},
journal = {Zapiski Nauchnykh Seminarov POMI},
pages = {95--103},
year = {2015},
volume = {438},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/ZNSL_2015_438_a6/}
}
TY - JOUR AU - A. M. Budylin AU - S. B. Levin TI - To the question of Schröedinger operator kernel resolvent asymptotics construction in the three one-dimensional quantum particles scattering problem interacting by finite repulsive pair potentials JO - Zapiski Nauchnykh Seminarov POMI PY - 2015 SP - 95 EP - 103 VL - 438 UR - http://geodesic.mathdoc.fr/item/ZNSL_2015_438_a6/ LA - ru ID - ZNSL_2015_438_a6 ER -
%0 Journal Article %A A. M. Budylin %A S. B. Levin %T To the question of Schröedinger operator kernel resolvent asymptotics construction in the three one-dimensional quantum particles scattering problem interacting by finite repulsive pair potentials %J Zapiski Nauchnykh Seminarov POMI %D 2015 %P 95-103 %V 438 %U http://geodesic.mathdoc.fr/item/ZNSL_2015_438_a6/ %G ru %F ZNSL_2015_438_a6
A. M. Budylin; S. B. Levin. To the question of Schröedinger operator kernel resolvent asymptotics construction in the three one-dimensional quantum particles scattering problem interacting by finite repulsive pair potentials. Zapiski Nauchnykh Seminarov POMI, Mathematical problems in the theory of wave propagation. Part 45, Tome 438 (2015), pp. 95-103. http://geodesic.mathdoc.fr/item/ZNSL_2015_438_a6/
[1] A. M. Budylin, V. S. Buslaev, “Reflection operator and their applications to asymptotic investigations of semiclassical integral equations”, Advances in Soviet Math., 7, no. 6, AMS, Providence, RI, 1991, 79–103 | MR
[2] L. D. Faddeev, Mathematical aspects of the three-body problem of the quantum scattering theory, Daniel Davey and Co., Inc., 1965 | MR
[3] V. S. Buslaev, S. B. Levin, P. Neittaanmäki, T. Ojala, “New approach to numerical computatio of the eigenfunctions of the continuous spectrum of three-particle Schrödinger operator: I. One-dimensional particles, short-range pair potentials”, JPhysA, 2010 | MR
[4] V. S. Buslaev, S. B. Levin, “Asymptotic Behavior of the Eigenfunctions of the Many-particle Shrödinger Operator. I. One-dimentional Particles”, Spectral theory of differential operators, Amer. Math. Soc. Transl. Ser. 2, 225, 2008, 55–71 | MR | Zbl
[5] A. M. Budylin, V. S. Buslaev, “Kvaziklassicheskaya asimptotika rezolventy integralnogo operatora svërtki s sinus-yadrom na konechnom intervale”, Adv. Sov. Math., 7, Amer. Math. Soc., 1995, 107–157 | MR
[6] E. Mourre, “Absence of singular continuous spectrum for certain self-adjoint operators”, Commun. MathPhys, 78 (1981), 391–408 | DOI | MR | Zbl
[7] P. Perry, I. M. Sigal, B. Simon, “Spectral analysis of $N$-body Schrodinger operators”, Annals of Mathematics, 114 (1981), 519–567 | DOI | MR | Zbl
[8] D. R. Yafaev, Matematicheskaya teoriya tasseyaniya, SPbGU, 1994
[9] I. M. Gelfand, N. Ya. Vilenkin, Nekotorye primeneniya garmonicheskogo analiza. Osnaschënnye gilbertovy prostranstva, Obobschënnye funktsii, 4, FM, 1961
[10] K. Moren, Metody gilbertova prostranstva, Mir, 1965 | MR
[11] M. Rid, B. Saimon, Metody sovremennoi matematicheskoi fiziki, v. 3, Teoriya Rasseyaniya, Mir, 1982 | MR