@article{ZNSL_2015_438_a5,
author = {A. M. Budylin and S. B. Levin},
title = {The equation of convolution on a~large finite interval with the symbol which has zeros of nonintegral powers},
journal = {Zapiski Nauchnykh Seminarov POMI},
pages = {83--94},
year = {2015},
volume = {438},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/ZNSL_2015_438_a5/}
}
TY - JOUR AU - A. M. Budylin AU - S. B. Levin TI - The equation of convolution on a large finite interval with the symbol which has zeros of nonintegral powers JO - Zapiski Nauchnykh Seminarov POMI PY - 2015 SP - 83 EP - 94 VL - 438 UR - http://geodesic.mathdoc.fr/item/ZNSL_2015_438_a5/ LA - ru ID - ZNSL_2015_438_a5 ER -
%0 Journal Article %A A. M. Budylin %A S. B. Levin %T The equation of convolution on a large finite interval with the symbol which has zeros of nonintegral powers %J Zapiski Nauchnykh Seminarov POMI %D 2015 %P 83-94 %V 438 %U http://geodesic.mathdoc.fr/item/ZNSL_2015_438_a5/ %G ru %F ZNSL_2015_438_a5
A. M. Budylin; S. B. Levin. The equation of convolution on a large finite interval with the symbol which has zeros of nonintegral powers. Zapiski Nauchnykh Seminarov POMI, Mathematical problems in the theory of wave propagation. Part 45, Tome 438 (2015), pp. 83-94. http://geodesic.mathdoc.fr/item/ZNSL_2015_438_a5/
[1] A. M. Budylin, V. S. Buslaev, “Reflection operators and their applications to asymptotic investigations of semiclassical integral equations”, Advances in Soviet Math., 7, AMS, Providence, RI, 1991, 107–157 | MR
[2] E. Ramires de Arelano, S. M.Grudsky, S. S. Mikhakovich, “The wiener-hopf integral equation on a finite interval: asymptotic solution for large intervals with an application to acoustics”, DD03, 2003
[3] A. M. Budylin, V. S. Buslaev, “Kvaziklassicheskie integralnye uravneniya”, DAN SSSR, 319:3 (1991), 527–530 | MR | Zbl
[4] A. M. Budylin, V. S. Buslaev, “Kvaziklassicheskie integralnye uravneniya s medlenno ubyvayuschimi yadrami na ogranichennykh oblastyakh”, Algebra i Analiz, 5:1 (1993), 160–178 | MR | Zbl
[5] A. M. Budylin, V. S. Buslaev, “Kvaziklassicheskaya asimptotika rezolventy integralnogo operatora svertki s sinus-yadrom na konechnom intervale”, Algebra i Analiz, 7:6 (1995), 79–103 | MR
[6] I. A. Feldman, I. Ts. Gokhberg, Uravneniya v svertkakh i proektsionnye metody ikh resheniya, Nauka, 1971 | MR
[7] I. Ts. Gokhberg, N. Ya. Krupnik, Vvedenie v teoriyu odnomernykh singulyarnykh integralnykh operatorov, Shtiintsa, Kishinev, 1973 | MR
[8] Z. Presdorf, Nekotorye klassy singulyarnykh uravnenii, Mir, 1979 | MR
[9] R. Li, S. Mittra, Analiticheskie metody teorii volnovodov, Mir, 1974