The equation of convolution on a large finite interval with the symbol which has zeros of nonintegral powers
Zapiski Nauchnykh Seminarov POMI, Mathematical problems in the theory of wave propagation. Part 45, Tome 438 (2015), pp. 83-94 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice du chapitre de livre

We study one equation of convolution on a large finite interval. This equation arose in acoustics for a description of a wave conductor surface with a bed of ice. The main feature of this equation is that the symbol of the corresponding operator has zeros of nonintegral degrees on the dual variable so that the inverse operator is a long-range one. We found power-order complete asymptotic expansion for a kernel of the inverse operator as a length of the interval tends to infinity.
@article{ZNSL_2015_438_a5,
     author = {A. M. Budylin and S. B. Levin},
     title = {The equation of convolution on a~large finite interval with the symbol which has zeros of nonintegral powers},
     journal = {Zapiski Nauchnykh Seminarov POMI},
     pages = {83--94},
     year = {2015},
     volume = {438},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZNSL_2015_438_a5/}
}
TY  - JOUR
AU  - A. M. Budylin
AU  - S. B. Levin
TI  - The equation of convolution on a large finite interval with the symbol which has zeros of nonintegral powers
JO  - Zapiski Nauchnykh Seminarov POMI
PY  - 2015
SP  - 83
EP  - 94
VL  - 438
UR  - http://geodesic.mathdoc.fr/item/ZNSL_2015_438_a5/
LA  - ru
ID  - ZNSL_2015_438_a5
ER  - 
%0 Journal Article
%A A. M. Budylin
%A S. B. Levin
%T The equation of convolution on a large finite interval with the symbol which has zeros of nonintegral powers
%J Zapiski Nauchnykh Seminarov POMI
%D 2015
%P 83-94
%V 438
%U http://geodesic.mathdoc.fr/item/ZNSL_2015_438_a5/
%G ru
%F ZNSL_2015_438_a5
A. M. Budylin; S. B. Levin. The equation of convolution on a large finite interval with the symbol which has zeros of nonintegral powers. Zapiski Nauchnykh Seminarov POMI, Mathematical problems in the theory of wave propagation. Part 45, Tome 438 (2015), pp. 83-94. http://geodesic.mathdoc.fr/item/ZNSL_2015_438_a5/

[1] A. M. Budylin, V. S. Buslaev, “Reflection operators and their applications to asymptotic investigations of semiclassical integral equations”, Advances in Soviet Math., 7, AMS, Providence, RI, 1991, 107–157 | MR

[2] E. Ramires de Arelano, S. M.Grudsky, S. S. Mikhakovich, “The wiener-hopf integral equation on a finite interval: asymptotic solution for large intervals with an application to acoustics”, DD03, 2003

[3] A. M. Budylin, V. S. Buslaev, “Kvaziklassicheskie integralnye uravneniya”, DAN SSSR, 319:3 (1991), 527–530 | MR | Zbl

[4] A. M. Budylin, V. S. Buslaev, “Kvaziklassicheskie integralnye uravneniya s medlenno ubyvayuschimi yadrami na ogranichennykh oblastyakh”, Algebra i Analiz, 5:1 (1993), 160–178 | MR | Zbl

[5] A. M. Budylin, V. S. Buslaev, “Kvaziklassicheskaya asimptotika rezolventy integralnogo operatora svertki s sinus-yadrom na konechnom intervale”, Algebra i Analiz, 7:6 (1995), 79–103 | MR

[6] I. A. Feldman, I. Ts. Gokhberg, Uravneniya v svertkakh i proektsionnye metody ikh resheniya, Nauka, 1971 | MR

[7] I. Ts. Gokhberg, N. Ya. Krupnik, Vvedenie v teoriyu odnomernykh singulyarnykh integralnykh operatorov, Shtiintsa, Kishinev, 1973 | MR

[8] Z. Presdorf, Nekotorye klassy singulyarnykh uravnenii, Mir, 1979 | MR

[9] R. Li, S. Mittra, Analiticheskie metody teorii volnovodov, Mir, 1974