The equation of convolution on a~large finite interval with the symbol which has zeros of nonintegral powers
Zapiski Nauchnykh Seminarov POMI, Mathematical problems in the theory of wave propagation. Part 45, Tome 438 (2015), pp. 83-94
Voir la notice de l'article provenant de la source Math-Net.Ru
We study one equation of convolution on a large finite interval. This equation arose in acoustics for a description of a wave conductor surface with a bed of ice. The main feature of this equation is that the symbol of the corresponding operator has zeros of nonintegral degrees on the dual variable so that the inverse operator is a long-range one. We found power-order complete asymptotic expansion for a kernel of the inverse operator as a length of the interval tends to infinity.
@article{ZNSL_2015_438_a5,
author = {A. M. Budylin and S. B. Levin},
title = {The equation of convolution on a~large finite interval with the symbol which has zeros of nonintegral powers},
journal = {Zapiski Nauchnykh Seminarov POMI},
pages = {83--94},
publisher = {mathdoc},
volume = {438},
year = {2015},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/ZNSL_2015_438_a5/}
}
TY - JOUR AU - A. M. Budylin AU - S. B. Levin TI - The equation of convolution on a~large finite interval with the symbol which has zeros of nonintegral powers JO - Zapiski Nauchnykh Seminarov POMI PY - 2015 SP - 83 EP - 94 VL - 438 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/ZNSL_2015_438_a5/ LA - ru ID - ZNSL_2015_438_a5 ER -
%0 Journal Article %A A. M. Budylin %A S. B. Levin %T The equation of convolution on a~large finite interval with the symbol which has zeros of nonintegral powers %J Zapiski Nauchnykh Seminarov POMI %D 2015 %P 83-94 %V 438 %I mathdoc %U http://geodesic.mathdoc.fr/item/ZNSL_2015_438_a5/ %G ru %F ZNSL_2015_438_a5
A. M. Budylin; S. B. Levin. The equation of convolution on a~large finite interval with the symbol which has zeros of nonintegral powers. Zapiski Nauchnykh Seminarov POMI, Mathematical problems in the theory of wave propagation. Part 45, Tome 438 (2015), pp. 83-94. http://geodesic.mathdoc.fr/item/ZNSL_2015_438_a5/