Simple solutions of the wave equation, singular at a ranning point, based on the complexified Bateman solution
Zapiski Nauchnykh Seminarov POMI, Mathematical problems in the theory of wave propagation. Part 45, Tome 438 (2015), pp. 73-82 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice du chapitre de livre

We suggest simple solutions of the homogeneous wave equation with constant propagation speed having a power-like singularity in a moving spatial point. The construction is are based on the complexified Bateman-type solution. Example of such a solution showing exponential decay with distance from the singular point is presented.
@article{ZNSL_2015_438_a4,
     author = {A. S. Blagovestchenskii and A. P. Kiselev and A. M. Tagirdzhanov},
     title = {Simple solutions of the wave equation, singular at a~ranning point, based on the complexified {Bateman} solution},
     journal = {Zapiski Nauchnykh Seminarov POMI},
     pages = {73--82},
     year = {2015},
     volume = {438},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZNSL_2015_438_a4/}
}
TY  - JOUR
AU  - A. S. Blagovestchenskii
AU  - A. P. Kiselev
AU  - A. M. Tagirdzhanov
TI  - Simple solutions of the wave equation, singular at a ranning point, based on the complexified Bateman solution
JO  - Zapiski Nauchnykh Seminarov POMI
PY  - 2015
SP  - 73
EP  - 82
VL  - 438
UR  - http://geodesic.mathdoc.fr/item/ZNSL_2015_438_a4/
LA  - ru
ID  - ZNSL_2015_438_a4
ER  - 
%0 Journal Article
%A A. S. Blagovestchenskii
%A A. P. Kiselev
%A A. M. Tagirdzhanov
%T Simple solutions of the wave equation, singular at a ranning point, based on the complexified Bateman solution
%J Zapiski Nauchnykh Seminarov POMI
%D 2015
%P 73-82
%V 438
%U http://geodesic.mathdoc.fr/item/ZNSL_2015_438_a4/
%G ru
%F ZNSL_2015_438_a4
A. S. Blagovestchenskii; A. P. Kiselev; A. M. Tagirdzhanov. Simple solutions of the wave equation, singular at a ranning point, based on the complexified Bateman solution. Zapiski Nauchnykh Seminarov POMI, Mathematical problems in the theory of wave propagation. Part 45, Tome 438 (2015), pp. 73-82. http://geodesic.mathdoc.fr/item/ZNSL_2015_438_a4/

[1] L. Khermander, Analiz lineinykh differentsialnykh operatorov s chastnymi proizvodnymi, v. I, Mir, M., 1986

[2] A. S. Blagoveschenskii, “Ploskie volny, resheniya Beitmena i istochniki na beskonechnosti”, Zap. nauchn. semin. POMI, 426, 2014, 23–33

[3] Yu. V. Egorov, Lineinye differentsialnye uravneniya glavnogo tipa, Nauka, M., 1984 | MR

[4] R. Kurant, D. Gilbert, Metody matematicheskoi fiziki, v. II, GTTI, M.–L., 1945

[5] P. Hillion, “Generalized phases and nondispersive waves”, Acta Applicandae Mathematica, 30:1 (1993), 35–45 | DOI | MR | Zbl

[6] A. P. Kiselev, M. V. Perel, “Highly localized solutions of the wave equation”, J. Math. Phys., 41:4 (2000), 1934–1955 | DOI | MR | Zbl

[7] I. M. Gelfand, G. E. Shilov, Obobschennye funktsii i deistviya nad nimi, Fizmatgiz, M., 1959

[8] A. P. Kiselev, M. V. Perel, “Otnositelno neiskazhayuschiesya resheniya $m$-mernogo volnovogo uravneniya”, Differntsialnye uravneniya, 38:8 (2002), 1128–1129 | MR | Zbl

[9] A. P. Kiselev, A. B. Plachenov, “Tochnye resheniya m-mernogo volnovogo uravneniya iz paraksialnykh. Dalneishee obobschenie resheniya Beitmena”, Zap. nauchn. semin. POMI, 393, 2011, 167–177 | MR