Simple solutions of the wave equation, singular at a~ranning point, based on the complexified Bateman solution
Zapiski Nauchnykh Seminarov POMI, Mathematical problems in the theory of wave propagation. Part 45, Tome 438 (2015), pp. 73-82

Voir la notice de l'article provenant de la source Math-Net.Ru

We suggest simple solutions of the homogeneous wave equation with constant propagation speed having a power-like singularity in a moving spatial point. The construction is are based on the complexified Bateman-type solution. Example of such a solution showing exponential decay with distance from the singular point is presented.
@article{ZNSL_2015_438_a4,
     author = {A. S. Blagovestchenskii and A. P. Kiselev and A. M. Tagirdzhanov},
     title = {Simple solutions of the wave equation, singular at a~ranning point, based on the complexified {Bateman} solution},
     journal = {Zapiski Nauchnykh Seminarov POMI},
     pages = {73--82},
     publisher = {mathdoc},
     volume = {438},
     year = {2015},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZNSL_2015_438_a4/}
}
TY  - JOUR
AU  - A. S. Blagovestchenskii
AU  - A. P. Kiselev
AU  - A. M. Tagirdzhanov
TI  - Simple solutions of the wave equation, singular at a~ranning point, based on the complexified Bateman solution
JO  - Zapiski Nauchnykh Seminarov POMI
PY  - 2015
SP  - 73
EP  - 82
VL  - 438
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/ZNSL_2015_438_a4/
LA  - ru
ID  - ZNSL_2015_438_a4
ER  - 
%0 Journal Article
%A A. S. Blagovestchenskii
%A A. P. Kiselev
%A A. M. Tagirdzhanov
%T Simple solutions of the wave equation, singular at a~ranning point, based on the complexified Bateman solution
%J Zapiski Nauchnykh Seminarov POMI
%D 2015
%P 73-82
%V 438
%I mathdoc
%U http://geodesic.mathdoc.fr/item/ZNSL_2015_438_a4/
%G ru
%F ZNSL_2015_438_a4
A. S. Blagovestchenskii; A. P. Kiselev; A. M. Tagirdzhanov. Simple solutions of the wave equation, singular at a~ranning point, based on the complexified Bateman solution. Zapiski Nauchnykh Seminarov POMI, Mathematical problems in the theory of wave propagation. Part 45, Tome 438 (2015), pp. 73-82. http://geodesic.mathdoc.fr/item/ZNSL_2015_438_a4/