Simple solutions of the wave equation, singular at a~ranning point, based on the complexified Bateman solution
Zapiski Nauchnykh Seminarov POMI, Mathematical problems in the theory of wave propagation. Part 45, Tome 438 (2015), pp. 73-82
Voir la notice de l'article provenant de la source Math-Net.Ru
We suggest simple solutions of the homogeneous wave equation with constant propagation speed having a power-like singularity in a moving spatial point. The construction is are based on the complexified Bateman-type solution. Example of such a solution showing exponential decay with distance from the singular point is presented.
@article{ZNSL_2015_438_a4,
author = {A. S. Blagovestchenskii and A. P. Kiselev and A. M. Tagirdzhanov},
title = {Simple solutions of the wave equation, singular at a~ranning point, based on the complexified {Bateman} solution},
journal = {Zapiski Nauchnykh Seminarov POMI},
pages = {73--82},
publisher = {mathdoc},
volume = {438},
year = {2015},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/ZNSL_2015_438_a4/}
}
TY - JOUR AU - A. S. Blagovestchenskii AU - A. P. Kiselev AU - A. M. Tagirdzhanov TI - Simple solutions of the wave equation, singular at a~ranning point, based on the complexified Bateman solution JO - Zapiski Nauchnykh Seminarov POMI PY - 2015 SP - 73 EP - 82 VL - 438 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/ZNSL_2015_438_a4/ LA - ru ID - ZNSL_2015_438_a4 ER -
%0 Journal Article %A A. S. Blagovestchenskii %A A. P. Kiselev %A A. M. Tagirdzhanov %T Simple solutions of the wave equation, singular at a~ranning point, based on the complexified Bateman solution %J Zapiski Nauchnykh Seminarov POMI %D 2015 %P 73-82 %V 438 %I mathdoc %U http://geodesic.mathdoc.fr/item/ZNSL_2015_438_a4/ %G ru %F ZNSL_2015_438_a4
A. S. Blagovestchenskii; A. P. Kiselev; A. M. Tagirdzhanov. Simple solutions of the wave equation, singular at a~ranning point, based on the complexified Bateman solution. Zapiski Nauchnykh Seminarov POMI, Mathematical problems in the theory of wave propagation. Part 45, Tome 438 (2015), pp. 73-82. http://geodesic.mathdoc.fr/item/ZNSL_2015_438_a4/