An interference head wave (Buldyrev's wave) and localization principle
Zapiski Nauchnykh Seminarov POMI, Mathematical problems in the theory of wave propagation. Part 45, Tome 438 (2015), pp. 36-45 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice du chapitre de livre

In the series of articles V. S. Buldyrev was considering interference head waves. We will call these waves as Buldyrev waves. Our main goal is to obtain formulas describing Buldyrev's wave using localization principle. Similar formulas were deduced (from another but also heuristic considerations) by V. S. Buldyrev earlier. Different point of view on a Buldyrev's wave was proposed by V. M. Babich. Some formulas for the waves of this class contain an illusory contradiction with concept of localization. We demonstrate that the contradiction is fictitious and formulas deduced by V. S. Buldyrev and results obtained later agree with localization principle.
@article{ZNSL_2015_438_a2,
     author = {V. M. Babich and A. A. Matskovskiy},
     title = {An interference head wave {(Buldyrev's} wave) and localization principle},
     journal = {Zapiski Nauchnykh Seminarov POMI},
     pages = {36--45},
     year = {2015},
     volume = {438},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZNSL_2015_438_a2/}
}
TY  - JOUR
AU  - V. M. Babich
AU  - A. A. Matskovskiy
TI  - An interference head wave (Buldyrev's wave) and localization principle
JO  - Zapiski Nauchnykh Seminarov POMI
PY  - 2015
SP  - 36
EP  - 45
VL  - 438
UR  - http://geodesic.mathdoc.fr/item/ZNSL_2015_438_a2/
LA  - ru
ID  - ZNSL_2015_438_a2
ER  - 
%0 Journal Article
%A V. M. Babich
%A A. A. Matskovskiy
%T An interference head wave (Buldyrev's wave) and localization principle
%J Zapiski Nauchnykh Seminarov POMI
%D 2015
%P 36-45
%V 438
%U http://geodesic.mathdoc.fr/item/ZNSL_2015_438_a2/
%G ru
%F ZNSL_2015_438_a2
V. M. Babich; A. A. Matskovskiy. An interference head wave (Buldyrev's wave) and localization principle. Zapiski Nauchnykh Seminarov POMI, Mathematical problems in the theory of wave propagation. Part 45, Tome 438 (2015), pp. 36-45. http://geodesic.mathdoc.fr/item/ZNSL_2015_438_a2/

[1] V. S. Buldyrev, “Issledovanie funktsii Grina v zadache difraktsii na prozrachnom krugovom tsilindre. I”, Zhurnal vych. matem. i mat. fiziki, 4, dopolnenie k No 4 (1964), 275–286 | MR | Zbl

[2] V. S. Buldyrev, “Interferentsiya korotkikh voln v zadache difraktsii na neodnorodnom tsilindre proizvolnogo secheniya”, IVUZ. Radiofizika, 10:5 (1967), 699–711

[3] V. M. Babich, “Boundary layer approach to describe an interference head wave”, Wave motion, 46 (2009), 169–173 | DOI | MR | Zbl

[4] V. M. Babich, “Pogransloinyi podkhod k opisaniyu golovnoi volny interferentsionnogo tipa. Matematicheskie voprosy teorii rasprostraneniya voln”, Zap. nauchn. semin. POMI, 43, 2014, 18–26

[5] J. B. Keller, “Diffraction by an convex cylinder”, IRE Trans. on Antennas and Prop., AP-4:3 (1956), 312–321 | DOI | MR

[6] A. A. Matskovskii, “Korotkovolnovyi tochechnyi istochnik kolebanii vblizi neodnorodnoi poluploskosti. Matematicheskie voprosy teorii rasprostraneniya voln”, Zap. nauchn. semin. POMI, 409, 2013, 107–20 | MR

[7] A. A. Matskovskii, “Golovnaya volna interferentsionnogo tipa v zadache difraktsii voln tochechnogo istochnika na neodnorodnoi poluploskosti”, ZhVM i MF (to appear)

[8] V. M. Babich, V. S. Buldyrev, Asimptoticheskie metody v zadachakh difraktsii korotkikh voln, Nauka, M., 1972 | MR