Complex WKB method for difference equations in bounded domains
Zapiski Nauchnykh Seminarov POMI, Mathematical problems in the theory of wave propagation. Part 45, Tome 438 (2015), pp. 236-254
Cet article a éte moissonné depuis la source Math-Net.Ru
We consider the difference Schrödinger equation $\psi(z+h)+\psi(z-h)+v(z)\psi(z)=E\psi(z)$, $z\in\mathbb C$, where $h>0$ and $E\in\mathbb C$ are parameters, and $v$ is a function analytic in a bounded domain $D\subset\mathbb C$. We develop an asymptotic method to study its solutons in the domain $D$ for small positive $h$.
@article{ZNSL_2015_438_a14,
author = {A. A. Fedotov and E. V. Tschetka},
title = {Complex {WKB} method for difference equations in bounded domains},
journal = {Zapiski Nauchnykh Seminarov POMI},
pages = {236--254},
year = {2015},
volume = {438},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/ZNSL_2015_438_a14/}
}
A. A. Fedotov; E. V. Tschetka. Complex WKB method for difference equations in bounded domains. Zapiski Nauchnykh Seminarov POMI, Mathematical problems in the theory of wave propagation. Part 45, Tome 438 (2015), pp. 236-254. http://geodesic.mathdoc.fr/item/ZNSL_2015_438_a14/
[1] V. Buslaev, A. Fedotov, “Kompleksnyi metod VKB dlya uravneniya Kharpera”, Algebra i Analiz, 6:3 (1994), 59–83 | MR
[2] M. V. Fedoryuk, Asimptoticheskie metody dlya lineinykh obyknovennykh differentsialnykh uravnenii, Librokom, M., 2009
[3] A. Fedotov, F. Klopp, “A complex WKB method for adiabatic problems”, Asymptotic analysis, 27 (2001), 219–264 | MR | Zbl
[4] A. A. Fedotov, “Metod monodromizatsii v teorii pochti-periodicheskikh uravnenii”, Algebra i analiz, 25:2 (2013), 203–235 | MR