@article{ZNSL_2015_438_a11,
author = {M. A. Lyalinov},
title = {Weyl{\textendash}Van der {Poll} phenomenon in acoustic diffraction by a~wedge or cone with impedance boundary conditions},
journal = {Zapiski Nauchnykh Seminarov POMI},
pages = {178--202},
year = {2015},
volume = {438},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/ZNSL_2015_438_a11/}
}
TY - JOUR AU - M. A. Lyalinov TI - Weyl–Van der Poll phenomenon in acoustic diffraction by a wedge or cone with impedance boundary conditions JO - Zapiski Nauchnykh Seminarov POMI PY - 2015 SP - 178 EP - 202 VL - 438 UR - http://geodesic.mathdoc.fr/item/ZNSL_2015_438_a11/ LA - ru ID - ZNSL_2015_438_a11 ER -
M. A. Lyalinov. Weyl–Van der Poll phenomenon in acoustic diffraction by a wedge or cone with impedance boundary conditions. Zapiski Nauchnykh Seminarov POMI, Mathematical problems in the theory of wave propagation. Part 45, Tome 438 (2015), pp. 178-202. http://geodesic.mathdoc.fr/item/ZNSL_2015_438_a11/
[1] L. M. Brekhovskikh, Waves in layered media, Academic Press, 1960 | MR
[2] V. A. Fock, Electromagnetic diffraction and propagation problems, Int. Series of Monographs on Electromagnetic waves, I, Pergamon Press, Oxford, UK, 1965 | MR
[3] Yu. A. Kravtsov, N. Y. Zhu, Theory of Diffraction. Heuristic Approach, Alpha Science Ser. Wave Phenom, Alpha Science, Oxford, UK, 2010
[4] C. F. Chien, W. W. Soroka, “Sound propagation along an impedance plane”, J. Sound and Vibration, 43:1 (1975), 9–20 | DOI | Zbl
[5] C. F. Chien, W. W. Soroka, “A note on the calculation of sound propagation along an impedance surface”, J. Sound and Vibration, 63:2 (1980), 340–343 | DOI
[6] C. Nocke, V. Mellert, T. Waters-Fuller, K. Attenborough, K. M. Li, “Impedance deduction from broad-band, point-source measurements at grazing incidence”, Acustica (Acta Acustica), 83 (1997), 1085–1090
[7] K. Attenborough, K. M. Li, K. Horoshenkov, Predicting outdoor sound, Taylor and Frensis, 2007
[8] F. Golay, G. Dutilleux, L. Simon, C. Ayrult, F. Poisson, Simplified model of a harmonic point source moving above an impedance ground, , Societe Francaise, d'Acoustique, Acoustics, Nantes, France, Apr. 2012 https://hal.archives-ouvertes.fr/hal-00810554
[9] G. D. Malyuzhinets, “Excitation, reflection and emission of surface waves from a wedge with given face impedances”, Soviet Phys.: Doklady, 3:4 (1958), 752–755
[10] V. M. Babich, M. A. Lyalinov, V. E. Grikurov, Diffraction Theory. The Sommerfeld-Malyuzhinets Technique, Alpha Science Ser. Wave Phenom., Alpha Science, Oxford, UK, 2008
[11] J.-M. L. Bernard, Méthode analytique et transformées fonctionnelles pour la diffraction d'ondes par une singularité conique: équation intégrale de noyau non oscillant pour le cas d'impédance constante, Rapport CEA-R-5764, Editions Dist-Saclay, 1997 ; “Letter to the Editor”, J. Phys. A, 32 (1999), L43–L48 ; An extended version: Advanced Theory of Diffraction by a Semi-infinite Impedance Cone, Alpha Science Ser Wave Phenom, Alpha Science, Oxford, UK, 2014 | Zbl | DOI | MR | Zbl
[12] J.-M. L. Bernard, M. A. Lyalinov, “Diffraction of acoustic waves by an impedance cone of an arbitrary cross-section”, Wave Motion, 33 (2001), 155–181, Erratum: p. 177 replace $O(1/\cos(\pi(\nu-b)))$ by $O(\nu^d\sin(\pi\nu)/\cos(\pi(\nu-b)))$ | DOI | MR | Zbl
[13] M. A. Lyalinov, N. Y. Zhu, Scattering of Waves by Wedges and Cones with Impedance Boundary Conditions, Mario Boella Series on Electromagnetism in Information Communication, SciTech-IET USA, Edison, NJ, 2013
[14] M. A. Lyalinov, “Scattering of an acoustic axially symmetric surface wave propagating to the vertex of a right-circular impedance cone”, Wave Motion, 47:4 (2009), 241–252 | DOI | MR
[15] M. V. Fedoryuk, Asimptotika, integraly i ryady, Nauka, 1977 | MR
[16] M. Berry, “Quantal phase factors accompanying adiabatic changes”, Proc. Roy. Soc. Ser. A, 382 (1802), 45–57 | MR
[17] N. Bleistein, “Uniform asymptotic expansions of integrals with stationary point near algebraic singularity”, Comm. Pure Appl. Math., 19:4 (1966), 353–370 | DOI | MR | Zbl
[18] I. S. Gradshteyn, I. M. Ryzhik, Table of Integrals, Series and Products, 4th ed., Academic Press, Orlando, 1980 | Zbl
[19] V. M. Babich, “On PC-Ansätze”, J. Math. Sci., 132:11 (2006), 2–10 | DOI | MR