Weyl–Van der Poll phenomenon in acoustic diffraction by a wedge or cone with impedance boundary conditions
Zapiski Nauchnykh Seminarov POMI, Mathematical problems in the theory of wave propagation. Part 45, Tome 438 (2015), pp. 178-202 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice du chapitre de livre

The work deals with the asymptotic description of the diffraction pattern which is analogous to the classical Weyl–Van der Poll phenomenon (the Weyl–Van der Poll formula). The latter arises in the problem of diffraction of waves generated by a source located near an impedance plane. The incident wave illuminates an impedance wedge or cone. The singular points of the wedge's (the edge points) or cone's (the vertex of the cone) boundary play the role of an imaginary source giving rise to the specific boundary layer in some vicinity of the corresponding impedance surface provided the surface impedance is relatively small. From the mathematical point of view the description of the phenomenon is given by means of the far field asymptotics for the Sommerfeld integral representations of the scattered field. For the small impedance of the scattering surface the singularities describing the surface wave, which propagates from the edge (or from the vertex) along the impedance surface, may be located in a neighborhood of the saddle points. The latter are responsible for the cylindrical wave from the edge of the wedge (or for the spherical wave from the vertex of the cone). As a result, the asymptotics of the Sommerfeld integral are uniformly represented by a Fresnel type integral for the wedge problem or by a parabolic cylinder type function for the cone problem.
@article{ZNSL_2015_438_a11,
     author = {M. A. Lyalinov},
     title = {Weyl{\textendash}Van der {Poll} phenomenon in acoustic diffraction by a~wedge or cone with impedance boundary conditions},
     journal = {Zapiski Nauchnykh Seminarov POMI},
     pages = {178--202},
     year = {2015},
     volume = {438},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZNSL_2015_438_a11/}
}
TY  - JOUR
AU  - M. A. Lyalinov
TI  - Weyl–Van der Poll phenomenon in acoustic diffraction by a wedge or cone with impedance boundary conditions
JO  - Zapiski Nauchnykh Seminarov POMI
PY  - 2015
SP  - 178
EP  - 202
VL  - 438
UR  - http://geodesic.mathdoc.fr/item/ZNSL_2015_438_a11/
LA  - ru
ID  - ZNSL_2015_438_a11
ER  - 
%0 Journal Article
%A M. A. Lyalinov
%T Weyl–Van der Poll phenomenon in acoustic diffraction by a wedge or cone with impedance boundary conditions
%J Zapiski Nauchnykh Seminarov POMI
%D 2015
%P 178-202
%V 438
%U http://geodesic.mathdoc.fr/item/ZNSL_2015_438_a11/
%G ru
%F ZNSL_2015_438_a11
M. A. Lyalinov. Weyl–Van der Poll phenomenon in acoustic diffraction by a wedge or cone with impedance boundary conditions. Zapiski Nauchnykh Seminarov POMI, Mathematical problems in the theory of wave propagation. Part 45, Tome 438 (2015), pp. 178-202. http://geodesic.mathdoc.fr/item/ZNSL_2015_438_a11/

[1] L. M. Brekhovskikh, Waves in layered media, Academic Press, 1960 | MR

[2] V. A. Fock, Electromagnetic diffraction and propagation problems, Int. Series of Monographs on Electromagnetic waves, I, Pergamon Press, Oxford, UK, 1965 | MR

[3] Yu. A. Kravtsov, N. Y. Zhu, Theory of Diffraction. Heuristic Approach, Alpha Science Ser. Wave Phenom, Alpha Science, Oxford, UK, 2010

[4] C. F. Chien, W. W. Soroka, “Sound propagation along an impedance plane”, J. Sound and Vibration, 43:1 (1975), 9–20 | DOI | Zbl

[5] C. F. Chien, W. W. Soroka, “A note on the calculation of sound propagation along an impedance surface”, J. Sound and Vibration, 63:2 (1980), 340–343 | DOI

[6] C. Nocke, V. Mellert, T. Waters-Fuller, K. Attenborough, K. M. Li, “Impedance deduction from broad-band, point-source measurements at grazing incidence”, Acustica (Acta Acustica), 83 (1997), 1085–1090

[7] K. Attenborough, K. M. Li, K. Horoshenkov, Predicting outdoor sound, Taylor and Frensis, 2007

[8] F. Golay, G. Dutilleux, L. Simon, C. Ayrult, F. Poisson, Simplified model of a harmonic point source moving above an impedance ground, , Societe Francaise, d'Acoustique, Acoustics, Nantes, France, Apr. 2012 https://hal.archives-ouvertes.fr/hal-00810554

[9] G. D. Malyuzhinets, “Excitation, reflection and emission of surface waves from a wedge with given face impedances”, Soviet Phys.: Doklady, 3:4 (1958), 752–755

[10] V. M. Babich, M. A. Lyalinov, V. E. Grikurov, Diffraction Theory. The Sommerfeld-Malyuzhinets Technique, Alpha Science Ser. Wave Phenom., Alpha Science, Oxford, UK, 2008

[11] J.-M. L. Bernard, Méthode analytique et transformées fonctionnelles pour la diffraction d'ondes par une singularité conique: équation intégrale de noyau non oscillant pour le cas d'impédance constante, Rapport CEA-R-5764, Editions Dist-Saclay, 1997 ; “Letter to the Editor”, J. Phys. A, 32 (1999), L43–L48 ; An extended version: Advanced Theory of Diffraction by a Semi-infinite Impedance Cone, Alpha Science Ser Wave Phenom, Alpha Science, Oxford, UK, 2014 | Zbl | DOI | MR | Zbl

[12] J.-M. L. Bernard, M. A. Lyalinov, “Diffraction of acoustic waves by an impedance cone of an arbitrary cross-section”, Wave Motion, 33 (2001), 155–181, Erratum: p. 177 replace $O(1/\cos(\pi(\nu-b)))$ by $O(\nu^d\sin(\pi\nu)/\cos(\pi(\nu-b)))$ | DOI | MR | Zbl

[13] M. A. Lyalinov, N. Y. Zhu, Scattering of Waves by Wedges and Cones with Impedance Boundary Conditions, Mario Boella Series on Electromagnetism in Information Communication, SciTech-IET USA, Edison, NJ, 2013

[14] M. A. Lyalinov, “Scattering of an acoustic axially symmetric surface wave propagating to the vertex of a right-circular impedance cone”, Wave Motion, 47:4 (2009), 241–252 | DOI | MR

[15] M. V. Fedoryuk, Asimptotika, integraly i ryady, Nauka, 1977 | MR

[16] M. Berry, “Quantal phase factors accompanying adiabatic changes”, Proc. Roy. Soc. Ser. A, 382 (1802), 45–57 | MR

[17] N. Bleistein, “Uniform asymptotic expansions of integrals with stationary point near algebraic singularity”, Comm. Pure Appl. Math., 19:4 (1966), 353–370 | DOI | MR | Zbl

[18] I. S. Gradshteyn, I. M. Ryzhik, Table of Integrals, Series and Products, 4th ed., Academic Press, Orlando, 1980 | Zbl

[19] V. M. Babich, “On PC-Ansätze”, J. Math. Sci., 132:11 (2006), 2–10 | DOI | MR