@article{ZNSL_2015_438_a10,
author = {V. A. Kozlov and S. A. Nazarov},
title = {Transmission conditions in a~one-dimensional model of bifurcating blood vessel with an elastic wall},
journal = {Zapiski Nauchnykh Seminarov POMI},
pages = {138--177},
year = {2015},
volume = {438},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/ZNSL_2015_438_a10/}
}
TY - JOUR AU - V. A. Kozlov AU - S. A. Nazarov TI - Transmission conditions in a one-dimensional model of bifurcating blood vessel with an elastic wall JO - Zapiski Nauchnykh Seminarov POMI PY - 2015 SP - 138 EP - 177 VL - 438 UR - http://geodesic.mathdoc.fr/item/ZNSL_2015_438_a10/ LA - ru ID - ZNSL_2015_438_a10 ER -
V. A. Kozlov; S. A. Nazarov. Transmission conditions in a one-dimensional model of bifurcating blood vessel with an elastic wall. Zapiski Nauchnykh Seminarov POMI, Mathematical problems in the theory of wave propagation. Part 45, Tome 438 (2015), pp. 138-177. http://geodesic.mathdoc.fr/item/ZNSL_2015_438_a10/
[1] V. A. Kozlov, S. A. Nazarov, “Poverkhnostnaya entalpiya i uprugie svoistva krovenosnykh sosudov”, Doklady RAN, 441:1 (2011), 38–43 | MR
[2] V. A. Kozlov, S. A. Nazarov, “Asymptotic models of anisotropic elastic walls of blood vessels”, Problemy mat. analiza (to appear)
[3] V. A. Kozlov, S. A. Nazarov, “Asimptoticheskaya model vzaimodeistviya potoka krovi so stenkami veny i okruzhayuschei myshechnoi tkanyu”, Doklady RAN, 446:6 (2012), 631–636 | MR
[4] V. A. Kozlov, S. A. Nazarov, “Asimptoticheskie modeli techeniya krovi v arteriyakh i venakh”, Zap. nauchn. semin. POMI, 409, 2012, 80–106 | MR
[5] F. Berntsson, M. Karlsson, V. A. Kozlov, S. A. Nazarov, “A one-dimensional model of viscous blood flow in an elastic vessel”, Applied Mathematics and Computation, (submitted)
[6] S. A. Nazarov, K. I. Piletskas, “Reinoldsovo techenie zhidkosti v tonkom trekhmernom kanale”, Litovskii matem. sbornik, 30:4 (1990), 772–783 | MR | Zbl
[7] V. A. Kozlov, S. A. Nazarov, “Prosteishaya odnomernaya model lozhnoi anevrizmy v bolshoi bedrennoi arterii”, Zap. nauchn. semin. POMI, 426, 2014, 64–86
[8] V. A. Kozlov, S. A. Nazarov, “Odnomernaya model vyazkouprugogo techeniya krovi v tonkom uprugom sosude”, Problemy matem. analiza, 78, Novosibirsk, 2015, 123–140 | Zbl
[9] S. A. Nazarov, G. Kh. Svirs, A. S. Slutskii, “Izgibnaya zhestkost tonkoi plastiny, armirovannoi periodicheskimi sistemami raz'edinennykh sterzhnei”, Prikladnaya matem. i mekhanika, 74:3 (2010), 441–454 | MR | Zbl
[10] S. A. Nazarov, G. Kh. Svirs, A. S. Slutskii, “Osrednenie tonkoi plastiny, usilennoi periodicheskimi semeistvami zhestkikh sterzhnei”, Matem. sbornik, 202:8 (2011), 41–80 | DOI | MR | Zbl
[11] W. J. Zwiebel, J. S. Pellerito, Introduction to vascular ultrasonography, 5th ed., Elsevier, Philadelphia, 2005
[12] J. P. Hornak, The Basics of MRI, Interactive Learning Software, 2008
[13] C. D. Murray, “The physiological principle of minimum work. I. The vascular system and cost of blood volume”, Proc. Natl. Acad. Sci. U.S.A., 12 (1926), 207–214 | DOI
[14] Y. C. Fung, Biomechanics. Circulation, Second ed., Springer, New York–Berlin, 2011
[15] G. S. Kassab, C. A. Rider, N. J. Tang, Y. C. Fung, “Morphometry of the pig coronary aterial trees”, Am. J. Physiol., 266 (1993), H359–H365
[16] G. S. Kassab, Y. C. Fung, “The pattern of coronary arteriolar bifurcation and the uniform shear hypothesis”, Ann. Biomed. Biol., 23 (1995), 13–20 | DOI
[17] J. P. Mynard, J. J. Smolich, “One-dimensional haemodynamic modeling and wave dynamics in the entire adult circulation”, Annals of Biomedical Engineering, 43:6 (2015), 1443–1460 | DOI
[18] S. A. Nazarov, K. Pileckas, “Asymptotic conditions at infinity for the Stokes and Navier–Stokes problems in domains with cylindrical outlets to infinity”, Quaderni di matematica, 4 (1999), 141–243 | MR | Zbl
[19] M. D. Van Daik, Metody vozmuschenii v mekhanike zhidkostei, Mir, M., 1967
[20] A. M. Ilin, Soglasovanie asimptoticheskikh razlozhenii reshenii kraevykh zadach, Nauka, M., 1989 | MR
[21] W. G. Mazja, S. A. Nazarov, B. A. Plamenewski, Asymptotische Theorie elliptischer Randwertaufgaben in singulär gestörten Gebieten, v. 1, Akademie-Verlag, Berlin, 1991 | MR
[22] L. Formaggia, A. Quarteroni, A. Veneziani, “Multiscale models of the vascular system”, Cardiovascular Mathematics. Modeling and simulation of the circulatory system, eds. Formaggia L., Quarteroni A., Veneziani A., Springer Verlag, Milano, 2009, 395–446 | MR
[23] J. Peiré, A. Veneziani, “Reduced models of the cardiovascular system”, Cardiovascular Mathematics. Modeling and simulation of the circulatory system, eds. Formaggia L., Quarteroni A., Veneziani A., Springer Verlag, Milano, 2009, 347–394 | MR
[24] G. P. Panasenko, Multi-Scale Modelling for Structures and Composites, Springer, Dordrecht, 2005 | MR
[25] J.-L. Lions, “Some more remarks on boundary value problems and junctions”, Asymptotic methods for elastic structures (Lisbon, 1993), Walter de Gruyter, Berlin–New York, 1995, 103–118 | MR | Zbl
[26] S. A. Nazarov, “Ellipticheskie zadachi na gibridnykh oblastyakh”, Funkts. analiz prilozh., 38:4 (2004), 55–72 | DOI | MR | Zbl
[27] M. Specovius-Neugebauer, “Approximation of the Stokes Dirichlet problem in domains with cylindrical outlets”, SIAM J. Math. Anal., 30:3 (1999), 645–677 | DOI | MR | Zbl
[28] G. P. Panasenko, “Asymptotic expansion of the solution of Navier-Stokes equation in tube structure and partial asymptotic decomposition of the domain”, Appl. Anal., 76:3–4 (2000), 363–381 | DOI | MR | Zbl
[29] F. Blanc, O. Gipouloux, G. Panasenko, A. M. Zine, “Asymptotic Analysis and Partial Asymptotic Decomposition of the Domain for Stokes Equation in Tube Structure”, Math. Models Methods Appl. Sci., 9:9 (1999), 1351–1378 | DOI | MR | Zbl
[30] G. Panasenko, K. Pileckas, “Asymptotic analysis of the nonsteady viscous flow with a given flow rate in a thin pipe”, Applicable Analysis, 91:3 (2012), 559–574 | DOI | MR | Zbl
[31] G. Panasenko, K. Pileckas, “Flows in a tube structure: equation on the graph”, J. Math. Physics, 55 (2014), 081505 | DOI | MR | Zbl
[32] G. Panasenko, K. Pileckas, “Asymptotic analysis of the non-steady Navier Stokes equations in a tube structures”, Nonlinear Analysis, (submitted)
[33] G. Polia, G. Sege, Izoperimetricheskie neravenstva v matematicheskoi fizike, Fizmatgiz, M., 1962 | MR
[34] V. A. Kozlov, S. A. Nazarov, G. Zavorokhin, A fractal graph model of capillary type systems, (submitted)