Transmission conditions in a one-dimensional model of bifurcating blood vessel with an elastic wall
Zapiski Nauchnykh Seminarov POMI, Mathematical problems in the theory of wave propagation. Part 45, Tome 438 (2015), pp. 138-177 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice du chapitre de livre

We derive transmission conditions at a bifurcation point in a one-dimensional model of blood vessels by using a three-dimensional model. Both classical Kirchhoff conditions ensuring the continuity of pressure and zero flux flow in the node has to be modified in order to reflect properly the elastic properties of blood vessels and the nodes themselves. A simple approximate calculation scheme for the new physical parameters in the transmission conditions is proposed. We develop a simplified model of straight fragments of arteries with localized defects such as lateral micro-aneurysms and cholesterol plaques – these models also require setting transmission conditions.
@article{ZNSL_2015_438_a10,
     author = {V. A. Kozlov and S. A. Nazarov},
     title = {Transmission conditions in a~one-dimensional model of bifurcating blood vessel with an elastic wall},
     journal = {Zapiski Nauchnykh Seminarov POMI},
     pages = {138--177},
     year = {2015},
     volume = {438},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZNSL_2015_438_a10/}
}
TY  - JOUR
AU  - V. A. Kozlov
AU  - S. A. Nazarov
TI  - Transmission conditions in a one-dimensional model of bifurcating blood vessel with an elastic wall
JO  - Zapiski Nauchnykh Seminarov POMI
PY  - 2015
SP  - 138
EP  - 177
VL  - 438
UR  - http://geodesic.mathdoc.fr/item/ZNSL_2015_438_a10/
LA  - ru
ID  - ZNSL_2015_438_a10
ER  - 
%0 Journal Article
%A V. A. Kozlov
%A S. A. Nazarov
%T Transmission conditions in a one-dimensional model of bifurcating blood vessel with an elastic wall
%J Zapiski Nauchnykh Seminarov POMI
%D 2015
%P 138-177
%V 438
%U http://geodesic.mathdoc.fr/item/ZNSL_2015_438_a10/
%G ru
%F ZNSL_2015_438_a10
V. A. Kozlov; S. A. Nazarov. Transmission conditions in a one-dimensional model of bifurcating blood vessel with an elastic wall. Zapiski Nauchnykh Seminarov POMI, Mathematical problems in the theory of wave propagation. Part 45, Tome 438 (2015), pp. 138-177. http://geodesic.mathdoc.fr/item/ZNSL_2015_438_a10/

[1] V. A. Kozlov, S. A. Nazarov, “Poverkhnostnaya entalpiya i uprugie svoistva krovenosnykh sosudov”, Doklady RAN, 441:1 (2011), 38–43 | MR

[2] V. A. Kozlov, S. A. Nazarov, “Asymptotic models of anisotropic elastic walls of blood vessels”, Problemy mat. analiza (to appear)

[3] V. A. Kozlov, S. A. Nazarov, “Asimptoticheskaya model vzaimodeistviya potoka krovi so stenkami veny i okruzhayuschei myshechnoi tkanyu”, Doklady RAN, 446:6 (2012), 631–636 | MR

[4] V. A. Kozlov, S. A. Nazarov, “Asimptoticheskie modeli techeniya krovi v arteriyakh i venakh”, Zap. nauchn. semin. POMI, 409, 2012, 80–106 | MR

[5] F. Berntsson, M. Karlsson, V. A. Kozlov, S. A. Nazarov, “A one-dimensional model of viscous blood flow in an elastic vessel”, Applied Mathematics and Computation, (submitted)

[6] S. A. Nazarov, K. I. Piletskas, “Reinoldsovo techenie zhidkosti v tonkom trekhmernom kanale”, Litovskii matem. sbornik, 30:4 (1990), 772–783 | MR | Zbl

[7] V. A. Kozlov, S. A. Nazarov, “Prosteishaya odnomernaya model lozhnoi anevrizmy v bolshoi bedrennoi arterii”, Zap. nauchn. semin. POMI, 426, 2014, 64–86

[8] V. A. Kozlov, S. A. Nazarov, “Odnomernaya model vyazkouprugogo techeniya krovi v tonkom uprugom sosude”, Problemy matem. analiza, 78, Novosibirsk, 2015, 123–140 | Zbl

[9] S. A. Nazarov, G. Kh. Svirs, A. S. Slutskii, “Izgibnaya zhestkost tonkoi plastiny, armirovannoi periodicheskimi sistemami raz'edinennykh sterzhnei”, Prikladnaya matem. i mekhanika, 74:3 (2010), 441–454 | MR | Zbl

[10] S. A. Nazarov, G. Kh. Svirs, A. S. Slutskii, “Osrednenie tonkoi plastiny, usilennoi periodicheskimi semeistvami zhestkikh sterzhnei”, Matem. sbornik, 202:8 (2011), 41–80 | DOI | MR | Zbl

[11] W. J. Zwiebel, J. S. Pellerito, Introduction to vascular ultrasonography, 5th ed., Elsevier, Philadelphia, 2005

[12] J. P. Hornak, The Basics of MRI, Interactive Learning Software, 2008

[13] C. D. Murray, “The physiological principle of minimum work. I. The vascular system and cost of blood volume”, Proc. Natl. Acad. Sci. U.S.A., 12 (1926), 207–214 | DOI

[14] Y. C. Fung, Biomechanics. Circulation, Second ed., Springer, New York–Berlin, 2011

[15] G. S. Kassab, C. A. Rider, N. J. Tang, Y. C. Fung, “Morphometry of the pig coronary aterial trees”, Am. J. Physiol., 266 (1993), H359–H365

[16] G. S. Kassab, Y. C. Fung, “The pattern of coronary arteriolar bifurcation and the uniform shear hypothesis”, Ann. Biomed. Biol., 23 (1995), 13–20 | DOI

[17] J. P. Mynard, J. J. Smolich, “One-dimensional haemodynamic modeling and wave dynamics in the entire adult circulation”, Annals of Biomedical Engineering, 43:6 (2015), 1443–1460 | DOI

[18] S. A. Nazarov, K. Pileckas, “Asymptotic conditions at infinity for the Stokes and Navier–Stokes problems in domains with cylindrical outlets to infinity”, Quaderni di matematica, 4 (1999), 141–243 | MR | Zbl

[19] M. D. Van Daik, Metody vozmuschenii v mekhanike zhidkostei, Mir, M., 1967

[20] A. M. Ilin, Soglasovanie asimptoticheskikh razlozhenii reshenii kraevykh zadach, Nauka, M., 1989 | MR

[21] W. G. Mazja, S. A. Nazarov, B. A. Plamenewski, Asymptotische Theorie elliptischer Randwertaufgaben in singulär gestörten Gebieten, v. 1, Akademie-Verlag, Berlin, 1991 | MR

[22] L. Formaggia, A. Quarteroni, A. Veneziani, “Multiscale models of the vascular system”, Cardiovascular Mathematics. Modeling and simulation of the circulatory system, eds. Formaggia L., Quarteroni A., Veneziani A., Springer Verlag, Milano, 2009, 395–446 | MR

[23] J. Peiré, A. Veneziani, “Reduced models of the cardiovascular system”, Cardiovascular Mathematics. Modeling and simulation of the circulatory system, eds. Formaggia L., Quarteroni A., Veneziani A., Springer Verlag, Milano, 2009, 347–394 | MR

[24] G. P. Panasenko, Multi-Scale Modelling for Structures and Composites, Springer, Dordrecht, 2005 | MR

[25] J.-L. Lions, “Some more remarks on boundary value problems and junctions”, Asymptotic methods for elastic structures (Lisbon, 1993), Walter de Gruyter, Berlin–New York, 1995, 103–118 | MR | Zbl

[26] S. A. Nazarov, “Ellipticheskie zadachi na gibridnykh oblastyakh”, Funkts. analiz prilozh., 38:4 (2004), 55–72 | DOI | MR | Zbl

[27] M. Specovius-Neugebauer, “Approximation of the Stokes Dirichlet problem in domains with cylindrical outlets”, SIAM J. Math. Anal., 30:3 (1999), 645–677 | DOI | MR | Zbl

[28] G. P. Panasenko, “Asymptotic expansion of the solution of Navier-Stokes equation in tube structure and partial asymptotic decomposition of the domain”, Appl. Anal., 76:3–4 (2000), 363–381 | DOI | MR | Zbl

[29] F. Blanc, O. Gipouloux, G. Panasenko, A. M. Zine, “Asymptotic Analysis and Partial Asymptotic Decomposition of the Domain for Stokes Equation in Tube Structure”, Math. Models Methods Appl. Sci., 9:9 (1999), 1351–1378 | DOI | MR | Zbl

[30] G. Panasenko, K. Pileckas, “Asymptotic analysis of the nonsteady viscous flow with a given flow rate in a thin pipe”, Applicable Analysis, 91:3 (2012), 559–574 | DOI | MR | Zbl

[31] G. Panasenko, K. Pileckas, “Flows in a tube structure: equation on the graph”, J. Math. Physics, 55 (2014), 081505 | DOI | MR | Zbl

[32] G. Panasenko, K. Pileckas, “Asymptotic analysis of the non-steady Navier Stokes equations in a tube structures”, Nonlinear Analysis, (submitted)

[33] G. Polia, G. Sege, Izoperimetricheskie neravenstva v matematicheskoi fizike, Fizmatgiz, M., 1962 | MR

[34] V. A. Kozlov, S. A. Nazarov, G. Zavorokhin, A fractal graph model of capillary type systems, (submitted)