Transmission conditions in a~one-dimensional model of bifurcating blood vessel with an elastic wall
Zapiski Nauchnykh Seminarov POMI, Mathematical problems in the theory of wave propagation. Part 45, Tome 438 (2015), pp. 138-177
Voir la notice de l'article provenant de la source Math-Net.Ru
We derive transmission conditions at a bifurcation point in a one-dimensional model of blood vessels by using a three-dimensional model. Both classical Kirchhoff conditions ensuring the continuity of pressure and zero flux flow in the node has to be modified in order to reflect properly the elastic properties of blood vessels and the nodes themselves. A simple approximate calculation scheme for the new physical parameters in the transmission conditions is proposed. We develop a simplified model of straight fragments of arteries with localized defects such as lateral micro-aneurysms and cholesterol plaques – these models also require setting transmission conditions.
@article{ZNSL_2015_438_a10,
author = {V. A. Kozlov and S. A. Nazarov},
title = {Transmission conditions in a~one-dimensional model of bifurcating blood vessel with an elastic wall},
journal = {Zapiski Nauchnykh Seminarov POMI},
pages = {138--177},
publisher = {mathdoc},
volume = {438},
year = {2015},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/ZNSL_2015_438_a10/}
}
TY - JOUR AU - V. A. Kozlov AU - S. A. Nazarov TI - Transmission conditions in a~one-dimensional model of bifurcating blood vessel with an elastic wall JO - Zapiski Nauchnykh Seminarov POMI PY - 2015 SP - 138 EP - 177 VL - 438 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/ZNSL_2015_438_a10/ LA - ru ID - ZNSL_2015_438_a10 ER -
%0 Journal Article %A V. A. Kozlov %A S. A. Nazarov %T Transmission conditions in a~one-dimensional model of bifurcating blood vessel with an elastic wall %J Zapiski Nauchnykh Seminarov POMI %D 2015 %P 138-177 %V 438 %I mathdoc %U http://geodesic.mathdoc.fr/item/ZNSL_2015_438_a10/ %G ru %F ZNSL_2015_438_a10
V. A. Kozlov; S. A. Nazarov. Transmission conditions in a~one-dimensional model of bifurcating blood vessel with an elastic wall. Zapiski Nauchnykh Seminarov POMI, Mathematical problems in the theory of wave propagation. Part 45, Tome 438 (2015), pp. 138-177. http://geodesic.mathdoc.fr/item/ZNSL_2015_438_a10/