@article{ZNSL_2015_438_a0,
author = {S. A. Avdonin and V. S. Mikhaylov and K. B. Nurtazina},
title = {On inverse dynamical and spectral problems for the wave and {Schr\"odinger} equations on finite trees. {The} leaf peeling method},
journal = {Zapiski Nauchnykh Seminarov POMI},
pages = {7--21},
year = {2015},
volume = {438},
language = {en},
url = {http://geodesic.mathdoc.fr/item/ZNSL_2015_438_a0/}
}
TY - JOUR AU - S. A. Avdonin AU - V. S. Mikhaylov AU - K. B. Nurtazina TI - On inverse dynamical and spectral problems for the wave and Schrödinger equations on finite trees. The leaf peeling method JO - Zapiski Nauchnykh Seminarov POMI PY - 2015 SP - 7 EP - 21 VL - 438 UR - http://geodesic.mathdoc.fr/item/ZNSL_2015_438_a0/ LA - en ID - ZNSL_2015_438_a0 ER -
%0 Journal Article %A S. A. Avdonin %A V. S. Mikhaylov %A K. B. Nurtazina %T On inverse dynamical and spectral problems for the wave and Schrödinger equations on finite trees. The leaf peeling method %J Zapiski Nauchnykh Seminarov POMI %D 2015 %P 7-21 %V 438 %U http://geodesic.mathdoc.fr/item/ZNSL_2015_438_a0/ %G en %F ZNSL_2015_438_a0
S. A. Avdonin; V. S. Mikhaylov; K. B. Nurtazina. On inverse dynamical and spectral problems for the wave and Schrödinger equations on finite trees. The leaf peeling method. Zapiski Nauchnykh Seminarov POMI, Mathematical problems in the theory of wave propagation. Part 45, Tome 438 (2015), pp. 7-21. http://geodesic.mathdoc.fr/item/ZNSL_2015_438_a0/
[1] S. Avdonin, B. Belinskiy, M. Matthews, “Dynamical inverse problems on a metric tree”, Inverse Problems, 27:7 (2011), 1–21 | DOI | MR
[2] S. Avdonin, B. Bell, “Determining a distributed conductance parameter for a neuronal cable model defined on a tree graph”, J. Inverse Problems Imaging, 9:3 (2015), 645–659 | DOI | MR
[3] S. A. Avdonin, P. B. Kurasov, “Inverse problems for quantum trees”, Inverse Problems Imaging, 2:1 (2008), 1–21 | DOI | MR | Zbl
[4] S. Avdonin, P. Kurasov, M. Nowaczyk, “Inverse problems for quantum trees II: recovering matching conditions for star graphs”, Inverse Problems Imaging, 4:4 (2010), 579–598 | DOI | MR | Zbl
[5] S. Avdonin, G. Leugering, V. Mikhaylov, “On an inverse problem for tree-like networks of elastic strings”, Zeit. Angew. Math. Mech., 90 (2010), 136–150 | DOI | MR | Zbl
[6] S. A. Avdonin, A. Choque Rivero, G. Leugering, V. S. Mikhaylov, “On the inverse problem of the two-velocity tree-like graph”, J. Appl. Math. Mech., 95:12 (2015), 1490–1500
[7] S. A. Avdonin, V. S. Mikhaylov, A. V. Rybkin, “The boundary control approach to the Titchmarsh–Weyl $m$-function”, Comm. Math. Phys., 275:3 (2007), 791–803 | DOI | MR | Zbl
[8] M. I. Belishev, “Boundary spectral inverse problem on a class of graphs (trees) by the BC method”, Inverse Problems, 20 (2004), 647–672 | DOI | MR | Zbl
[9] M. I. Belishev, A. F. Vakulenko, “Inverse problems on graphs: recovering the tree of strings by the BC-method”, J. Inv. Ill-Posed Problems, 14 (2006), 29–46 | DOI | MR | Zbl
[10] B. M. Brown, R. Weikard, “A Borg-Levinson theorem for trees”, Proc. R. Soc. Lond. Ser. A Math. Phys. Eng. Sci., 461:2062 (2005), 3231–3243 | DOI | MR | Zbl
[11] G. Freiling, V. Yurko, “Inverse problems for Strum-Liouville operators on noncompact trees”, Results Math., 50:3–4 (2007), 195–212 | DOI | MR
[12] V. Yurko, “Inverse Sturm-Lioville operator on graphs”, Inverse Problems, 21 (2005), 1075–1086 | DOI | MR | Zbl