@article{ZNSL_2015_437_a9,
author = {P. P. Nikitin},
title = {$O(\infty)$- and $\mathrm{Sp}(\infty)$-invariant ergodic measures on the spaces of infinite antisymmetric and quaternionic antihermitian matrices},
journal = {Zapiski Nauchnykh Seminarov POMI},
pages = {207--220},
year = {2015},
volume = {437},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/ZNSL_2015_437_a9/}
}
TY - JOUR
AU - P. P. Nikitin
TI - $O(\infty)$- and $\mathrm{Sp}(\infty)$-invariant ergodic measures on the spaces of infinite antisymmetric and quaternionic antihermitian matrices
JO - Zapiski Nauchnykh Seminarov POMI
PY - 2015
SP - 207
EP - 220
VL - 437
UR - http://geodesic.mathdoc.fr/item/ZNSL_2015_437_a9/
LA - ru
ID - ZNSL_2015_437_a9
ER -
%0 Journal Article
%A P. P. Nikitin
%T $O(\infty)$- and $\mathrm{Sp}(\infty)$-invariant ergodic measures on the spaces of infinite antisymmetric and quaternionic antihermitian matrices
%J Zapiski Nauchnykh Seminarov POMI
%D 2015
%P 207-220
%V 437
%U http://geodesic.mathdoc.fr/item/ZNSL_2015_437_a9/
%G ru
%F ZNSL_2015_437_a9
P. P. Nikitin. $O(\infty)$- and $\mathrm{Sp}(\infty)$-invariant ergodic measures on the spaces of infinite antisymmetric and quaternionic antihermitian matrices. Zapiski Nauchnykh Seminarov POMI, Representation theory, dynamical systems, combinatorial and algoritmic methods. Part XXVI. Representation theory, dynamical systems, combinatorial methods, Tome 437 (2015), pp. 207-220. http://geodesic.mathdoc.fr/item/ZNSL_2015_437_a9/
[1] J. J. Duistermaat, G. J. Heckman, “On the variation in the cohomology of the symplectic form of the reduced phase space”, Invent. Math., 69:2 (1982), 259–268 | DOI | MR | Zbl
[2] A. Ferrer, B. Eynard, P. Di Francesco, J.-B. Zuber, “Correlation functions of Harish-Chandra integrals over the orthogonal and the symplectic groups”, J. Stat. Phys., 129 (2007), 885–935 | DOI | MR | Zbl
[3] Harish-Chandra, “Differential operators on a semisimple Lie algebra”, Amer. J. Math., 79 (1957), 87–120 | DOI | MR | Zbl
[4] Khua Lo-ken, Garmonicheskii analiz funktsii mnogikh kompleksnykh peremennykh v klassicheskikh oblastyakh, Izdatelstvo inostrannoi literatury, M., 1959 | MR
[5] I. G. Macdonald, Symmetric functions and Hall polynomials, Clarendon Press, Oxford, 1979 | MR | Zbl
[6] G. I. Olshanski, A. M. Vershik, “Ergodic unitarily invariant measures on the space of infinite Hermitian matrices”, Contemporary Mathematical Physics, Amer. Math. Soc. Transl. Ser. 2, 175, Amer. Math. Soc., Providence, RI, 1996, 137–175 | MR | Zbl
[7] G. I. Olshanski, “Unitary representations of infinite-dimensional pairs $(G,K)$ and the formalism of R. Howe”, Representation of Lie Groups and Related Topics, eds. A. M. Vershik, D. P. Zhelobenko, Gordon and Breach, New York etc., 1990, 269–463 | MR
[8] D. Pickrell, “Mackey analysis of infinite classical motion groups”, Pacific J. Math., 150:1 (1991), 139–166 | DOI | MR | Zbl
[9] D. Pickrell, “Separable representations of automorphism groups of infinite symmetric spaces”, J. Funct. Anal., 90 (1990), 1–26 | DOI | MR | Zbl
[10] M. Rabaoui, “Asymptotic harmonic analysis on the space of square complex matrices”, J. Lie Theory, 18:3 (2008), 645–670 | MR | Zbl
[11] M. Rabaoui, “A Bochner type theorem for inductive limits of Gelfand pairs”, Ann. Inst. Fourier (Grenoble), 58:5 (2008), 1551–1573 | DOI | MR | Zbl
[12] A. M. Vershik, “A description of invariant measures for actions of certain infinite-dimensional groups”, Dokl. Akad. Nauk SSSR, 218 (1974), 749–752 | MR | Zbl