$O(\infty)$- and $\mathrm{Sp}(\infty)$-invariant ergodic measures on the spaces of infinite antisymmetric and quaternionic antihermitian matrices
Zapiski Nauchnykh Seminarov POMI, Representation theory, dynamical systems, combinatorial and algoritmic methods. Part XXVI. Representation theory, dynamical systems, combinatorial methods, Tome 437 (2015), pp. 207-220

Voir la notice de l'article provenant de la source Math-Net.Ru

The ergodic measures for the actions of the infinite orthogonal group $O(\infty)$ and the infinite symplectic group $\mathrm{Sp}(\infty)$ by conjugations on the spaces of infinite real antisymmetric and infinite quaternionic antihermitian matrices are classified, with the use of the Vershik–Olshanski “ergodic method.”
@article{ZNSL_2015_437_a9,
     author = {P. P. Nikitin},
     title = {$O(\infty)$- and $\mathrm{Sp}(\infty)$-invariant ergodic measures on the spaces of infinite antisymmetric and quaternionic antihermitian matrices},
     journal = {Zapiski Nauchnykh Seminarov POMI},
     pages = {207--220},
     publisher = {mathdoc},
     volume = {437},
     year = {2015},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZNSL_2015_437_a9/}
}
TY  - JOUR
AU  - P. P. Nikitin
TI  - $O(\infty)$- and $\mathrm{Sp}(\infty)$-invariant ergodic measures on the spaces of infinite antisymmetric and quaternionic antihermitian matrices
JO  - Zapiski Nauchnykh Seminarov POMI
PY  - 2015
SP  - 207
EP  - 220
VL  - 437
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/ZNSL_2015_437_a9/
LA  - ru
ID  - ZNSL_2015_437_a9
ER  - 
%0 Journal Article
%A P. P. Nikitin
%T $O(\infty)$- and $\mathrm{Sp}(\infty)$-invariant ergodic measures on the spaces of infinite antisymmetric and quaternionic antihermitian matrices
%J Zapiski Nauchnykh Seminarov POMI
%D 2015
%P 207-220
%V 437
%I mathdoc
%U http://geodesic.mathdoc.fr/item/ZNSL_2015_437_a9/
%G ru
%F ZNSL_2015_437_a9
P. P. Nikitin. $O(\infty)$- and $\mathrm{Sp}(\infty)$-invariant ergodic measures on the spaces of infinite antisymmetric and quaternionic antihermitian matrices. Zapiski Nauchnykh Seminarov POMI, Representation theory, dynamical systems, combinatorial and algoritmic methods. Part XXVI. Representation theory, dynamical systems, combinatorial methods, Tome 437 (2015), pp. 207-220. http://geodesic.mathdoc.fr/item/ZNSL_2015_437_a9/