@article{ZNSL_2015_437_a8,
author = {O. A. Manita},
title = {Nonlinear {Fokker{\textendash}Planck{\textendash}Kolmogorov} equations in {Hilbert} spaces},
journal = {Zapiski Nauchnykh Seminarov POMI},
pages = {184--206},
year = {2015},
volume = {437},
language = {en},
url = {http://geodesic.mathdoc.fr/item/ZNSL_2015_437_a8/}
}
O. A. Manita. Nonlinear Fokker–Planck–Kolmogorov equations in Hilbert spaces. Zapiski Nauchnykh Seminarov POMI, Representation theory, dynamical systems, combinatorial and algoritmic methods. Part XXVI. Representation theory, dynamical systems, combinatorial methods, Tome 437 (2015), pp. 184-206. http://geodesic.mathdoc.fr/item/ZNSL_2015_437_a8/
[1] L. Ambrosio, E. Mainini., “Infinite-dimensional porous media equations and optimal transportation”, J. Evol. Equ., 10:1 (2010), 217–246 | DOI | MR | Zbl
[2] V. I. Bogachev, G. Da Prato, M. Röckner, S. V. Shaposhnikov, “An analytic approach to infinite-dimensional continuity and Fokker–Planck–Kolmogorov equations”, Ann. Sc. Norm. Super. Pisa, 15:3 (2015), 983–1023
[3] V. I. Bogachev, G. Da Prato, M. Röckner, S. V. Shaposhnikov, “Nonlinear evolution equations for measures on infinite dimensional spaces”, Stochastic Partial Differential Equations and Applications, Quaderni di Matematica, 25, 2010, 51–64 | MR
[4] V. I. Bogachev, N. V. Krylov, M. Röckner, S. V. Shaposhnikov, Fokker–Planck–Kolmogorov Equations, Amer. Math. Soc., Providence, Rhode Island, 2015
[5] G. Da Prato, J. Zabczyk, Stochastic Equations in Infinite Dimensions, Cambridge Univ. Press, Cambridge, 1992 | MR | Zbl
[6] A. D. Fokker, “Die mittlere Energie rotierender elektrischer Dipole im Strahlungsfeld”, Ann. Phys., 348:5 (1914), 810–820 | DOI
[7] A. N. Kolmogoroff, “Über die analytischen Methoden in der Wahrscheinlichkeitsrechnung”, Math. Ann., 104:1 (1931), 415–458 | DOI | MR
[8] O. A. Manita, M. S. Romanov, S. V. Shaposhnikov, “On uniqueness of solutions to nonlinear Fokker–Planck–Kolmogorov equations”, Nonlinear Anal., 128 (2015), 199–226 | DOI | MR | Zbl
[9] O. A. Manita, M. S. Romanov, S. V. Shaposhnikov, “Uniqueness of probability solutions to nonlinear Fokker–Planck–Kolmogorov equation”, Dokl. Math., 91:2 (2015), 142–146 | DOI | MR | Zbl
[10] O. A. Manita, S. V. Shaposhnikov, “Nonlinear parabolic equations for measures”, St. Petersburg Math. J., 25 (2014), 43–62 | DOI | MR | Zbl
[11] L. Natile, M. A. Peletier, G. Savaré, “Contraction of general transportation costs along solutions to Fokker–Planck equations with monotone drifts”, J. Math. Pures Appl., 95:1 (2011), 18–35 | DOI | MR | Zbl
[12] M. Planck, “Über Einen Satz der Statistischen Dynamik und Seine Erweiterung in der Quantentheorie”, Sitzungberichte der Preussischen Akademie der Wissenschaften, 1917, 324–341
[13] A. V. Skorokhod, Studies in the Theory of Random Processes, Addison-Wisley, 1965 | MR | Zbl
[14] D. W. Stroock, S. R. S. Varadhan, Multidimensional Diffusion Processes, Springer, Berlin, 1979 | MR | Zbl