Nonlinear Fokker–Planck–Kolmogorov equations in Hilbert spaces
Zapiski Nauchnykh Seminarov POMI, Representation theory, dynamical systems, combinatorial and algoritmic methods. Part XXVI. Representation theory, dynamical systems, combinatorial methods, Tome 437 (2015), pp. 184-206 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice du chapitre de livre

We study the Cauchy problem for nonlinear Fokker–Planck–Kolmogorov equations for probability measures on a Hilbert space, corresponding to stochastic partial differential equations. Sufficient conditions for the uniqueness of probability solutions for a cylindrical diffusion operator and for a possibly degenerate diffusion operator are given. A new general existence result is established without explicit growth restrictions on the coefficients.
@article{ZNSL_2015_437_a8,
     author = {O. A. Manita},
     title = {Nonlinear {Fokker{\textendash}Planck{\textendash}Kolmogorov} equations in {Hilbert} spaces},
     journal = {Zapiski Nauchnykh Seminarov POMI},
     pages = {184--206},
     year = {2015},
     volume = {437},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/ZNSL_2015_437_a8/}
}
TY  - JOUR
AU  - O. A. Manita
TI  - Nonlinear Fokker–Planck–Kolmogorov equations in Hilbert spaces
JO  - Zapiski Nauchnykh Seminarov POMI
PY  - 2015
SP  - 184
EP  - 206
VL  - 437
UR  - http://geodesic.mathdoc.fr/item/ZNSL_2015_437_a8/
LA  - en
ID  - ZNSL_2015_437_a8
ER  - 
%0 Journal Article
%A O. A. Manita
%T Nonlinear Fokker–Planck–Kolmogorov equations in Hilbert spaces
%J Zapiski Nauchnykh Seminarov POMI
%D 2015
%P 184-206
%V 437
%U http://geodesic.mathdoc.fr/item/ZNSL_2015_437_a8/
%G en
%F ZNSL_2015_437_a8
O. A. Manita. Nonlinear Fokker–Planck–Kolmogorov equations in Hilbert spaces. Zapiski Nauchnykh Seminarov POMI, Representation theory, dynamical systems, combinatorial and algoritmic methods. Part XXVI. Representation theory, dynamical systems, combinatorial methods, Tome 437 (2015), pp. 184-206. http://geodesic.mathdoc.fr/item/ZNSL_2015_437_a8/

[1] L. Ambrosio, E. Mainini., “Infinite-dimensional porous media equations and optimal transportation”, J. Evol. Equ., 10:1 (2010), 217–246 | DOI | MR | Zbl

[2] V. I. Bogachev, G. Da Prato, M. Röckner, S. V. Shaposhnikov, “An analytic approach to infinite-dimensional continuity and Fokker–Planck–Kolmogorov equations”, Ann. Sc. Norm. Super. Pisa, 15:3 (2015), 983–1023

[3] V. I. Bogachev, G. Da Prato, M. Röckner, S. V. Shaposhnikov, “Nonlinear evolution equations for measures on infinite dimensional spaces”, Stochastic Partial Differential Equations and Applications, Quaderni di Matematica, 25, 2010, 51–64 | MR

[4] V. I. Bogachev, N. V. Krylov, M. Röckner, S. V. Shaposhnikov, Fokker–Planck–Kolmogorov Equations, Amer. Math. Soc., Providence, Rhode Island, 2015

[5] G. Da Prato, J. Zabczyk, Stochastic Equations in Infinite Dimensions, Cambridge Univ. Press, Cambridge, 1992 | MR | Zbl

[6] A. D. Fokker, “Die mittlere Energie rotierender elektrischer Dipole im Strahlungsfeld”, Ann. Phys., 348:5 (1914), 810–820 | DOI

[7] A. N. Kolmogoroff, “Über die analytischen Methoden in der Wahrscheinlichkeitsrechnung”, Math. Ann., 104:1 (1931), 415–458 | DOI | MR

[8] O. A. Manita, M. S. Romanov, S. V. Shaposhnikov, “On uniqueness of solutions to nonlinear Fokker–Planck–Kolmogorov equations”, Nonlinear Anal., 128 (2015), 199–226 | DOI | MR | Zbl

[9] O. A. Manita, M. S. Romanov, S. V. Shaposhnikov, “Uniqueness of probability solutions to nonlinear Fokker–Planck–Kolmogorov equation”, Dokl. Math., 91:2 (2015), 142–146 | DOI | MR | Zbl

[10] O. A. Manita, S. V. Shaposhnikov, “Nonlinear parabolic equations for measures”, St. Petersburg Math. J., 25 (2014), 43–62 | DOI | MR | Zbl

[11] L. Natile, M. A. Peletier, G. Savaré, “Contraction of general transportation costs along solutions to Fokker–Planck equations with monotone drifts”, J. Math. Pures Appl., 95:1 (2011), 18–35 | DOI | MR | Zbl

[12] M. Planck, “Über Einen Satz der Statistischen Dynamik und Seine Erweiterung in der Quantentheorie”, Sitzungberichte der Preussischen Akademie der Wissenschaften, 1917, 324–341

[13] A. V. Skorokhod, Studies in the Theory of Random Processes, Addison-Wisley, 1965 | MR | Zbl

[14] D. W. Stroock, S. R. S. Varadhan, Multidimensional Diffusion Processes, Springer, Berlin, 1979 | MR | Zbl