@article{ZNSL_2015_437_a7,
author = {A. A. Lodkin and A. R. Minabutdinov},
title = {Limiting curves for the {Pascal} adic transformation},
journal = {Zapiski Nauchnykh Seminarov POMI},
pages = {145--183},
year = {2015},
volume = {437},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/ZNSL_2015_437_a7/}
}
A. A. Lodkin; A. R. Minabutdinov. Limiting curves for the Pascal adic transformation. Zapiski Nauchnykh Seminarov POMI, Representation theory, dynamical systems, combinatorial and algoritmic methods. Part XXVI. Representation theory, dynamical systems, combinatorial methods, Tome 437 (2015), pp. 145-183. http://geodesic.mathdoc.fr/item/ZNSL_2015_437_a7/
[1] A. M. Vershik, “Ravnomernaya algebraicheskaya approksimatsiya operatorov sdviga i umnozheniya”, DAN SSSR, 259:3 (1981), 526–529 | MR | Zbl
[2] A. M. Vershik, “Teorema o markovskoi periodicheskoi approksimatsii v ergodicheskoi teorii”, Zap. nauchn. sem. LOMI, 115, 1982, 72–82 | MR | Zbl
[3] A. M. Vershik, “Avtomorfizm Paskalya imeet nepreryvnyi spektr”, Funkts. analiz i ego pril., 453:3 (2011), 16–33 | MR
[4] M. I. Gordin, “O tsentralnoi predelnoi teoreme dlya statsionarnykh protsessov”, DAN SSSR, 188:4 (1969), 739–741 | MR | Zbl
[5] M. I. Gordin, “Zamechanie o martingalnom metode dokazatelstva tsentralnoi predelnoi teoremy dlya statsionarnykh posledovatelnostei”, Zap. nauchn. sem. POMI, 311, 2004, 124–132 | MR | Zbl
[6] A. A. Lodkin, I. E. Manaev, A. R. Minabutdinov, “Asimptotika masshtabirovannoi entropii avtomorfizma Paskalya”, Zap. nauchn. sem. POMI, 378, 2010, 58–72 | MR
[7] A. A. Lodkin, I. E. Manaev, A. R. Minabutdinov, “Realizatsiya avtomorfizma Paskalya v grafe konkatenatsii i funktsiya $s_2(n)$”, Zap. nauchn. sem. POMI, 403, 2012, 95–102 | MR
[8] A. P. Minabutdinov, I. E. Manaev, “Funktsiya Kruskala–Katony, posledovatelnost Konveya, krivaya Takagi i avtomorfizm Paskalya”, Zap. nauchn. sem. POMI, 411, 2013, 135–147
[9] A. P. Minabutdinov, “Sluchainye otkloneniya ergodicheskikh summ v avtomorfizme Paskalya dlya mery Lebega”, Zap. nauchn. sem. POMI, 432, 2015, 224–260 | Zbl
[10] A. P. Minabutdinov, “Asimptoticheskoe razlozhenie polinomov Kravchuka”, Zap. nauchn. sem. POMI, 436, 2015, 174–188
[11] A. P. Prudnikov, Yu. A. Brychkov, O. I. Marichev, Integraly i ryady, v. 3, Spetsialnye funktsii. Dopolnitelnye glavy, 2-e izdanie, Fizmatlit, 2003 | MR
[12] E. M. Rudo, “Asimptotika raspredelenii sluchainykh bluzhdanii na mnogomernykh grafakh Paskalya i na reshetkakh kornei”, Zap. nauchn. sem. POMI, 403, 2012, 158–171 | MR
[13] P. Allaart, K. Kawamura, “The Takagi function: a survey”, Real Anal. Exchange, 37:1 (2012), 1–54 | MR | Zbl
[14] L. Berg, M. Krüppel, “De Rham's singular function and related functions”, Z. Anal. Anwendungen, 19:1 (2000), 227–237 | DOI | MR | Zbl
[15] P. Billingsley, Probability and Measure, 3rd edition, Wiley, New York, 1995 | MR | Zbl
[16] E. de Amo, M. Diaz Carrillo, J. Fernandez-Sanchez, “Singular functions with applications to fractal dimensions and generalized Takagi functions”, Acta Appl. Math., 119:1 (2012), 129–148 | DOI | MR | Zbl
[17] E. de Amo, J. Fernandez-Sanchez, “A generalised dyadic representation system”, Int. J. Pure Appl. Math., 52:1 (2009), 49–66 | MR | Zbl
[18] G. de Rham, “Sur quelques courbes définies par des équations fonctionnelles”, Univ. e Politec. Torino. Rend. Sem. Mat., 16 (1956), 101–113 | MR
[19] R. Girgensohn, “Nowhere differentiable solutions of a system of functional equations”, Aequationes Math., 47:1 (1994), 89–99 | DOI | MR | Zbl
[20] R. Girgensohn, “Digital sums and functional equations”, Integers, 12:1 (2012), 141–160 | DOI | MR | Zbl
[21] A. Hajan, Y. Ito, S. Kakutani, “Invariant measure and orbits of dissipative transformations”, Adv. Math., 9:1 (1972), 52–65 | DOI | MR
[22] G. Halasz, “Remarks on the remainder in Birkhoff's ergodic theorem”, Acta Math. Acad. Sci. Hungar., 28:3–4 (1976), 389–395 | DOI | MR | Zbl
[23] É. Janvresse, T. de la Rue, “The Pascal adic transformation is loosely Bernoulli”, Ann. Inst. H. Poincaré Probab. Statist., 40:2 (2004), 133–139 | DOI | MR | Zbl
[24] É. Janvresse, T. de la Rue, Y. Velenik, “Self-similar corrections to the ergodic theorem for the Pascal-adic transformation”, Stoch. Dyn., 5:1 (2005), 1–25 | DOI | MR | Zbl
[25] S. Jukna, Extremal Combinatorics: With Applications in Computer Science, Springer, 2010 | MR
[26] S. Kakutani, “A problem of equidistribution on the unit interval $[0,1]$”, Lect. Notes Math., 541, 1976, 369–375 | DOI | MR | Zbl
[27] K. Kawamura, “On the set of points where Lebesgue's singular function has the derivative zero”, Proc. Japan Acad. Ser. A, 87:9 (2011), 162–166 | DOI | MR | Zbl
[28] M. Krawtchouk, “Sur une généralisation des polynômes d'Hermite”, C. R. Acad. Sci. Ser. Math., 189 (1929), 620–622 | Zbl
[29] M. Krüppel, “De Rham's singular function, its partial derivatives with respect to the parameter and binary digital sums”, Rostock. Math. Kolloq., 64 (2009), 57–74 | MR | Zbl
[30] M. Lacey, “On weak convergence in dynamical systems to self-similar processes with spectral representation”, Trans. Amer. Math. Soc., 328 (1991), 767–778 | DOI | MR | Zbl
[31] N. R. Ladhawala, “Absolute summability of Walsh–Fourier series”, Pacific J. Math., 65:1 (1976), 103–108 | DOI | MR | Zbl
[32] Z. Lomnicki, S. Ulam, “Sur la théorie de la mesure dans les espaces combinatoires et son application au calcul des probabilités. I. Variables indépendantes”, Fund. Math., 23 (1934), 237–278
[33] X. Mela, K. Petersen, “Dynamical properties of the Pascal adic transformation”, Ergodic Theory Dynam. Systems, 25:1 (2005), 227–256 | DOI | MR | Zbl
[34] T. Takagi, “A simple example of the continuous function without derivative”, Proc. Phys.-Math. Soc., 5–6 (1903), 176–177
[35] E. Trollope, “An explicit expression for binary digital sums”, Math. Mag., 41 (1968), 21–25 | DOI | MR | Zbl
[36] D. Volný, “Invariance principles and Gaussian approximation for strictly stationary processes.”, Trans. Amer. Math. Soc., 35:8 (1999), 3351–3371 | DOI | MR