A study of the growth of maximal and typical normalized dimensions of strict Young diagrams
Zapiski Nauchnykh Seminarov POMI, Representation theory, dynamical systems, combinatorial and algoritmic methods. Part XXVI. Representation theory, dynamical systems, combinatorial methods, Tome 437 (2015), pp. 81-99 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice du chapitre de livre

In this paper, we investigate the asymptotics of the normalized dimensions of strict Young diagrams (i.e., the numbers of paths to vertices in the Schur graph). We describe the results of corresponding computer experiments. The strict Young diagrams parametrize the projective representations of the symmetric group $S_n$. So, the asymptotics of the normalized dimensions of diagrams gives us the asymptotics of the dimensions of projective representations as well. Sequences of strict diagrams of high dimension consisting of up to one million cells were built. It was proved by an exhaustive search that the first 250 diagrams of all these sequences have the maximum possible dimensions. Presumably, these sequences contain infinitely many diagrams of maximum dimension, and thus give the correct asymptotics of their growth. Also, we investigate the behavior of the normalized dimensions of typical diagrams with respect to the Plancherel measure on the Schur graph. The calculations strongly agree with A. M. Vershik's hypothesis on the convergence of the normalized dimensions of maximal and Plancherel typical diagrams not only for the standard Young graph, but also for the Schur graph.
@article{ZNSL_2015_437_a4,
     author = {N. N. Vasiliev and V. S. Duzhin},
     title = {A study of the growth of maximal and typical normalized dimensions of strict {Young} diagrams},
     journal = {Zapiski Nauchnykh Seminarov POMI},
     pages = {81--99},
     year = {2015},
     volume = {437},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZNSL_2015_437_a4/}
}
TY  - JOUR
AU  - N. N. Vasiliev
AU  - V. S. Duzhin
TI  - A study of the growth of maximal and typical normalized dimensions of strict Young diagrams
JO  - Zapiski Nauchnykh Seminarov POMI
PY  - 2015
SP  - 81
EP  - 99
VL  - 437
UR  - http://geodesic.mathdoc.fr/item/ZNSL_2015_437_a4/
LA  - ru
ID  - ZNSL_2015_437_a4
ER  - 
%0 Journal Article
%A N. N. Vasiliev
%A V. S. Duzhin
%T A study of the growth of maximal and typical normalized dimensions of strict Young diagrams
%J Zapiski Nauchnykh Seminarov POMI
%D 2015
%P 81-99
%V 437
%U http://geodesic.mathdoc.fr/item/ZNSL_2015_437_a4/
%G ru
%F ZNSL_2015_437_a4
N. N. Vasiliev; V. S. Duzhin. A study of the growth of maximal and typical normalized dimensions of strict Young diagrams. Zapiski Nauchnykh Seminarov POMI, Representation theory, dynamical systems, combinatorial and algoritmic methods. Part XXVI. Representation theory, dynamical systems, combinatorial methods, Tome 437 (2015), pp. 81-99. http://geodesic.mathdoc.fr/item/ZNSL_2015_437_a4/

[1] A. M. Vershik, S. V. Kerov, “Asimptotika maksimalnoi i tipichnoi razmernostei neprivodimykh predstavlenii simmetricheskoi gruppy”, Funkts. anal. i ego pril., 19:1 (1985), 25–36 | MR | Zbl

[2] A. M. Vershik, D. A. Pavlov, “Chislennye eksperimenty v zadachakh asimptoticheskoi teorii predstavlenii”, Zap. nauchn. semin. POMI, 373, 2009, 77–93 | MR

[3] N. N. Vasilev, V. S. Duzhin, “Postroenie neprivodimykh predstavlenii simmetricheskoi gruppy $S(n)$ s bolshimi i maksimalnymi razmernostyami”, Inform.-upr. sistemy, 2015, no. 3, 17–22

[4] L. Petrov, “Sluchainye bluzhdaniya na strogikh razbieniyakh”, Zap. nauchn. semin. POMI, 373, 2009, 226–272

[5] F. Petrov, Polynomial approach to explicit formulae for generalized binomial coefficients, arXiv: 1504.01007

[6] V. N. Ivanov, “Razmernost kosykh sdvinutykh diagramm Yunga i proektivnye kharaktery beskonechnoi simmetricheskoi gruppy”, Zap. nauchn. semin. POMI, 240, 1997, 115–135 | MR | Zbl

[7] M. L. Nazarov, “Ortogonalnyi bazis v neprivodimykh proektivnykh predstavleniyakh simmetricheskoi gruppy”, Funkts. anal. i ego pril., 22:1 (1988), 77–78 | MR | Zbl

[8] A. M. Borodin, “Multiplikativnye tsentralnye mery na grafe Shura”, Zap. nauchn. semin. POMI, 240, 1997, 44–52 | MR | Zbl