A higher-order asymptotic expansion of the Krawtchouk polynomials
Zapiski Nauchnykh Seminarov POMI, Representation theory, dynamical systems, combinatorial methods. Part XXV, Tome 436 (2015), pp. 174-188

Voir la notice de l'article provenant de la source Math-Net.Ru

The paper extends the classical result on the convergence of Krawtchouk polynomials to Hermite polynomials. We provide a uniform asymptotic expansion of Krawtchouk polynomials in terms of Hermite polynomials and obtain explicit expressions for a few first terms of this expansion. The research is motivated by the study of ergodic sums of the Pascal adic transformation.
@article{ZNSL_2015_436_a9,
     author = {A. R. Minabutdinov},
     title = {A higher-order asymptotic expansion of the {Krawtchouk} polynomials},
     journal = {Zapiski Nauchnykh Seminarov POMI},
     pages = {174--188},
     publisher = {mathdoc},
     volume = {436},
     year = {2015},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZNSL_2015_436_a9/}
}
TY  - JOUR
AU  - A. R. Minabutdinov
TI  - A higher-order asymptotic expansion of the Krawtchouk polynomials
JO  - Zapiski Nauchnykh Seminarov POMI
PY  - 2015
SP  - 174
EP  - 188
VL  - 436
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/ZNSL_2015_436_a9/
LA  - ru
ID  - ZNSL_2015_436_a9
ER  - 
%0 Journal Article
%A A. R. Minabutdinov
%T A higher-order asymptotic expansion of the Krawtchouk polynomials
%J Zapiski Nauchnykh Seminarov POMI
%D 2015
%P 174-188
%V 436
%I mathdoc
%U http://geodesic.mathdoc.fr/item/ZNSL_2015_436_a9/
%G ru
%F ZNSL_2015_436_a9
A. R. Minabutdinov. A higher-order asymptotic expansion of the Krawtchouk polynomials. Zapiski Nauchnykh Seminarov POMI, Representation theory, dynamical systems, combinatorial methods. Part XXV, Tome 436 (2015), pp. 174-188. http://geodesic.mathdoc.fr/item/ZNSL_2015_436_a9/