A higher-order asymptotic expansion of the Krawtchouk polynomials
Zapiski Nauchnykh Seminarov POMI, Representation theory, dynamical systems, combinatorial methods. Part XXV, Tome 436 (2015), pp. 174-188 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice du chapitre de livre

The paper extends the classical result on the convergence of Krawtchouk polynomials to Hermite polynomials. We provide a uniform asymptotic expansion of Krawtchouk polynomials in terms of Hermite polynomials and obtain explicit expressions for a few first terms of this expansion. The research is motivated by the study of ergodic sums of the Pascal adic transformation.
@article{ZNSL_2015_436_a9,
     author = {A. R. Minabutdinov},
     title = {A higher-order asymptotic expansion of the {Krawtchouk} polynomials},
     journal = {Zapiski Nauchnykh Seminarov POMI},
     pages = {174--188},
     year = {2015},
     volume = {436},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZNSL_2015_436_a9/}
}
TY  - JOUR
AU  - A. R. Minabutdinov
TI  - A higher-order asymptotic expansion of the Krawtchouk polynomials
JO  - Zapiski Nauchnykh Seminarov POMI
PY  - 2015
SP  - 174
EP  - 188
VL  - 436
UR  - http://geodesic.mathdoc.fr/item/ZNSL_2015_436_a9/
LA  - ru
ID  - ZNSL_2015_436_a9
ER  - 
%0 Journal Article
%A A. R. Minabutdinov
%T A higher-order asymptotic expansion of the Krawtchouk polynomials
%J Zapiski Nauchnykh Seminarov POMI
%D 2015
%P 174-188
%V 436
%U http://geodesic.mathdoc.fr/item/ZNSL_2015_436_a9/
%G ru
%F ZNSL_2015_436_a9
A. R. Minabutdinov. A higher-order asymptotic expansion of the Krawtchouk polynomials. Zapiski Nauchnykh Seminarov POMI, Representation theory, dynamical systems, combinatorial methods. Part XXV, Tome 436 (2015), pp. 174-188. http://geodesic.mathdoc.fr/item/ZNSL_2015_436_a9/

[1] D. Dai, R. Wong, “Global asymptotics of Krawtchouk polynomials – a Riemann–Hilbert approach”, Chin. Ann. Math. Ser. B, 28:1 (2007), 1–34 | DOI | MR | Zbl

[2] G. I. Ivchenko, Yu. I. Medvedev, V. A. Mironova, “Mnogochleny Kravchuka i ikh primeneniya v zadachakh kriptografii i teorii kodirovaniya”, Mat. vopr. kriptogr., 6:1 (2015), 33–56

[3] M. Kravchuk, “Sur une généralisation des polynomes d'Hermite”, C. R. Math., 189 (1929), 620–622

[4] A. A. Lodkin, A. R. Minabutdinov, Predelnye funktsii adicheskogo avtomorfizma Paskalya, gotovitsya k pechati

[5] A. F. Nikiforov, S. K. Suslov, V. B. Uvarov, Klassicheskie ortogonalnye polinomy diskretnoi peremennoi, Nauka, M., 1985 | MR

[6] V. V. Petrov, Summy nezavisimykh sluchainykh velichin, Fizmatlit, M., 1972 | MR

[7] G. Segë, Ortogonalnye mnogochleny, Fizmatlit, M., 1962

[8] I. I. Sharapudinov, “Asimptoticheskie svoistva polinomov Kravchuka”, Mat. zametki, 44:5 (1988), 682–693 | MR | Zbl

[9] M. V. Fedoryuk, Metod perevala, Nauka, M., 1977 | MR

[10] M. Abramovits, I. Stigan, Spravochnik po spetsialnym funktsiyam, Nauka, M., 1979 | MR