On the subadditivity of a scaling entropy sequence
Zapiski Nauchnykh Seminarov POMI, Representation theory, dynamical systems, combinatorial methods. Part XXV, Tome 436 (2015), pp. 167-173 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice du chapitre de livre

We prove that if the class of sclaing entropy sequences of an automorphism is nonempty, then it contains a nondecreasing subadditive sequence.
@article{ZNSL_2015_436_a8,
     author = {P. B. Zatitskiy and F. V. Petrov},
     title = {On the subadditivity of a~scaling entropy sequence},
     journal = {Zapiski Nauchnykh Seminarov POMI},
     pages = {167--173},
     year = {2015},
     volume = {436},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZNSL_2015_436_a8/}
}
TY  - JOUR
AU  - P. B. Zatitskiy
AU  - F. V. Petrov
TI  - On the subadditivity of a scaling entropy sequence
JO  - Zapiski Nauchnykh Seminarov POMI
PY  - 2015
SP  - 167
EP  - 173
VL  - 436
UR  - http://geodesic.mathdoc.fr/item/ZNSL_2015_436_a8/
LA  - ru
ID  - ZNSL_2015_436_a8
ER  - 
%0 Journal Article
%A P. B. Zatitskiy
%A F. V. Petrov
%T On the subadditivity of a scaling entropy sequence
%J Zapiski Nauchnykh Seminarov POMI
%D 2015
%P 167-173
%V 436
%U http://geodesic.mathdoc.fr/item/ZNSL_2015_436_a8/
%G ru
%F ZNSL_2015_436_a8
P. B. Zatitskiy; F. V. Petrov. On the subadditivity of a scaling entropy sequence. Zapiski Nauchnykh Seminarov POMI, Representation theory, dynamical systems, combinatorial methods. Part XXV, Tome 436 (2015), pp. 167-173. http://geodesic.mathdoc.fr/item/ZNSL_2015_436_a8/

[1] A. M. Vershik, “Dinamicheskaya teoriya rosta v gruppakh: entropiya, granitsy, primery”, UMN, 59:4(334) (2000), 59–128 | DOI | MR | Zbl

[2] A. M. Vershik, “Sluchainye metricheskie prostranstva i universalnoe prostranstvo Urysona”, Fundamentalnaya matematika segodnya, MTsNMO, M., 2003, 54–88 ; arXiv: math/0205086[math.PR] | MR

[3] A. M. Vershik, “Informatsiya, entropiya, dinamika”, Matematika KhKh veka. Vzglyad iz Peterburga, MTsNMO, M., 2010, 47–76

[4] A. M. Vershik, “Masshtabirovannaya entropiya i avtomorfizmy s chisto tochechnym spektrom”, Algebra i analiz, 23:1 (2011), 111–135 | MR | Zbl

[5] A. M. Vershik, A. D. Gorbulskii, “Masshtabirovannaya entropiya filtratsii $\sigma$-algebr”, Teor. veroyatn. i prim., 52:3 (2007), 446–467 | DOI | MR | Zbl

[6] P. B. Zatitskii, “O vozmozhnoi skorosti rosta masshtabiruyuschei entropiinoi posledovatelnosti”, Zap. nauchn. semin. POMI, 436, 2015, 136–166

[7] P. B. Zatitskii, F. V. Petrov, “Ob ispravlenii metrik”, Zap. nauchn. semin. POMI, 390, 2011, 201–209 | MR

[8] A. N. Kolmogorov, “Teoriya peredachi informatsii”: A. N. Kolmogorov, Teoriya informatsii i teoriya algoritmov, Nauka, M., 1987, 29–58 | MR

[9] A. M. Vershik, “Dynamics of metrics in measure spaces and their asymptotic invariants”, Markov Process. Related Fields, 16:1 (2010), 169–184 | MR | Zbl

[10] A. M. Vershik, P. B. Zatitskiy, F. V. Petrov, “Geometry and dynamics of admissible metrics in measure spaces”, Cent. Eur. J. Math., 1:3 (2013), 379–400 | MR