@article{ZNSL_2015_436_a7,
author = {P. B. Zatitskiy},
title = {On the possible growth rate of a~scaling entropy sequence},
journal = {Zapiski Nauchnykh Seminarov POMI},
pages = {136--166},
year = {2015},
volume = {436},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/ZNSL_2015_436_a7/}
}
P. B. Zatitskiy. On the possible growth rate of a scaling entropy sequence. Zapiski Nauchnykh Seminarov POMI, Representation theory, dynamical systems, combinatorial methods. Part XXV, Tome 436 (2015), pp. 136-166. http://geodesic.mathdoc.fr/item/ZNSL_2015_436_a7/
[1] A. M. Vershik, “Ravnomernaya algebraicheskaya approksimatsiya operatorov sdviga i umnozheniya”, DAN SSSR, 259:3 (1981), 526–529 | MR | Zbl
[2] A. M. Vershik, “Teorema o markovskoi periodicheskoi approksimatsii v ergodicheskoi teorii”, Zap. nauchn. semin. LOMI, 115, 1982, 72–82 | MR | Zbl
[3] A. M. Vershik, “Dinamicheskaya teoriya rosta v gruppakh: entropiya, granitsy, primery”, UMN, 59:4(334) (2000), 59–128 | DOI | MR | Zbl
[4] A. M. Vershik, “Sluchainye metricheskie prostranstva i universalnoe prostranstvo Urysona”, Fundamentalnaya matematika segodnya, MTsNMO, M., 2003, 54–88 ; arXiv: math/0205086[math.PR] | MR
[5] A. M. Vershik, “Informatsiya, entropiya, dinamika”, Matematika KhKh veka. Vzglyad iz Peterburga, MTsNMO, M., 2010, 47–76
[6] A. M. Vershik, “Masshtabirovannaya entropiya i avtomorfizmy s chisto tochechnym spektrom”, Algebra i analiz, 23:1 (2011), 111–135 | MR | Zbl
[7] A. M. Vershik, “Osnaschennye graduirovannye grafy, proektivnye predely simpleksov i ikh granitsy”, Zap. nauchn. semin. POMI, 432, 2015, 83–104 | Zbl
[8] A. M. Vershik, A. D. Gorbulskii, “Masshtabirovannaya entropiya filtratsii $\sigma$-algebr”, Teor. veroyatn. i prim., 52:3 (2007), 446–467 | DOI | MR | Zbl
[9] A. M. Vershik, S. V. Kerov, “Lokalno poluprostye algebry. Kombinatornaya teoriya i $K_0$-funktor”, Itogi nauki i tekhniki. Seriya “Sovremennye problemy matematiki. Noveishie dostizheniya”, 26, VINITI, M., 1985, 3–56 | MR | Zbl
[10] P. B. Zatitskii, “Masshtabiruyuschaya entropiinaya posledovatelnost: invariantnost i primery”, Zap. nauchn. semin. POMI, 432, 2015, 128–161
[11] P. B. Zatitskii, F. V. Petrov, “Ob ispravlenii metrik”, Zap. nauchn. semin. POMI, 390, 2011, 201–209 | MR
[12] P. B. Zatitskii, F. V. Petrov, “O subadditivnosti masshtabiruyuschei entropiinoi posledovatelnosti”, Zap. nauchn. semin. POMI, 436, 2015, 167–173
[13] A. N. Kolmogorov, “Teoriya peredachi informatsii”: A. N. Kolmogorov, Teoriya informatsii i teoriya algoritmov, Nauka, M., 1987, 29–58 | MR
[14] S. Ferenczi, “Measure-theoretic complexity of ergodic systems”, Israel J. Math., 100 (1997), 189–207 | DOI | MR | Zbl
[15] S. Ferenczi, K. K. Park, “Entropy dimensions and a class of constructive examples”, Discrete Contin. Dyn. Syst., 17:1 (2007), 133–141 | MR | Zbl
[16] A. Katok, J.-P. Thouvenot, “Slow entropy type invariants and smooth realization of commuting measure-preserving transformations”, Ann. Inst. H. Poincaré Probab. Statist., 33:3 (1997), 323–338 | DOI | MR | Zbl
[17] A. M. Vershik, “Dynamics of metrics in measure spaces and their asymptotic invariants”, Markov Process. Related Fields, 16:1 (2010), 169–184 | MR | Zbl
[18] A. M. Vershik, P. B. Zatitskiy, F. V. Petrov, “Geometry and dynamics of admissible metrics in measure spaces”, Cent. Eur. J. Math., 11:3 (2013), 379–400 | MR | Zbl