Cohomology of the Iwasawa subgroup of the group $U(p,p)$ in nonunitary representations
Zapiski Nauchnykh Seminarov POMI, Representation theory, dynamical systems, combinatorial methods. Part XXV, Tome 436 (2015), pp. 112-121

Voir la notice de l'article provenant de la source Math-Net.Ru

We construct a special injective nonunitary bounded irreducible representation for the Iwasawa subgroup of the semisimple Lie group $U(p,p)$ with $p>1$.
@article{ZNSL_2015_436_a5,
     author = {A. M. Vershik and M. I. Graev},
     title = {Cohomology of the {Iwasawa} subgroup of the group $U(p,p)$ in nonunitary representations},
     journal = {Zapiski Nauchnykh Seminarov POMI},
     pages = {112--121},
     publisher = {mathdoc},
     volume = {436},
     year = {2015},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZNSL_2015_436_a5/}
}
TY  - JOUR
AU  - A. M. Vershik
AU  - M. I. Graev
TI  - Cohomology of the Iwasawa subgroup of the group $U(p,p)$ in nonunitary representations
JO  - Zapiski Nauchnykh Seminarov POMI
PY  - 2015
SP  - 112
EP  - 121
VL  - 436
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/ZNSL_2015_436_a5/
LA  - ru
ID  - ZNSL_2015_436_a5
ER  - 
%0 Journal Article
%A A. M. Vershik
%A M. I. Graev
%T Cohomology of the Iwasawa subgroup of the group $U(p,p)$ in nonunitary representations
%J Zapiski Nauchnykh Seminarov POMI
%D 2015
%P 112-121
%V 436
%I mathdoc
%U http://geodesic.mathdoc.fr/item/ZNSL_2015_436_a5/
%G ru
%F ZNSL_2015_436_a5
A. M. Vershik; M. I. Graev. Cohomology of the Iwasawa subgroup of the group $U(p,p)$ in nonunitary representations. Zapiski Nauchnykh Seminarov POMI, Representation theory, dynamical systems, combinatorial methods. Part XXV, Tome 436 (2015), pp. 112-121. http://geodesic.mathdoc.fr/item/ZNSL_2015_436_a5/