Toward the history of dynamical entropy: comparing two definitions
Zapiski Nauchnykh Seminarov POMI, Representation theory, dynamical systems, combinatorial methods. Part XXV, Tome 436 (2015), pp. 101-111 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice du chapitre de livre

Two definitions are compared for the measure-theoretic entropy of an automorphism of a Lebesgue space: the commonly known definition suggested in 1959 by Ya. G. Sinai and the definition from the unpublished master thesis by D. Z. Arov (1957). The result is that the two definitions lead to essentially the same object in the class of ergodic automorphisms, while for the nonergodic case the situation is in general different.
@article{ZNSL_2015_436_a4,
     author = {B. M. Gurevich},
     title = {Toward the history of dynamical entropy: comparing two definitions},
     journal = {Zapiski Nauchnykh Seminarov POMI},
     pages = {101--111},
     year = {2015},
     volume = {436},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZNSL_2015_436_a4/}
}
TY  - JOUR
AU  - B. M. Gurevich
TI  - Toward the history of dynamical entropy: comparing two definitions
JO  - Zapiski Nauchnykh Seminarov POMI
PY  - 2015
SP  - 101
EP  - 111
VL  - 436
UR  - http://geodesic.mathdoc.fr/item/ZNSL_2015_436_a4/
LA  - ru
ID  - ZNSL_2015_436_a4
ER  - 
%0 Journal Article
%A B. M. Gurevich
%T Toward the history of dynamical entropy: comparing two definitions
%J Zapiski Nauchnykh Seminarov POMI
%D 2015
%P 101-111
%V 436
%U http://geodesic.mathdoc.fr/item/ZNSL_2015_436_a4/
%G ru
%F ZNSL_2015_436_a4
B. M. Gurevich. Toward the history of dynamical entropy: comparing two definitions. Zapiski Nauchnykh Seminarov POMI, Representation theory, dynamical systems, combinatorial methods. Part XXV, Tome 436 (2015), pp. 101-111. http://geodesic.mathdoc.fr/item/ZNSL_2015_436_a4/

[1] D. Z. Arov, Teoriya informatsii i peredachi ee po kanalam svyazi, Diplomnaya rabota, Odesskii gosudarstvennyi universitet, 1957

[2] D. Z. Arov, “The influence of V. P. Potapov and M. G. Krein on my scientific work”, Oper. Theory Adv. Appl., 72 (1994), 1–16 | MR | Zbl

[3] C. Grillenberger, U. Krengel, “On marginal distributions and isomorphisms of stationary processes”, Math. Z., 149:2 (1976), 131–154 | DOI | MR | Zbl

[4] A. N. Kolmogorov, “Novyi metricheskii invariant tranzitivnykh dinamicheskikh sistem i avtomorfizm prostranstv Lebega”, DAN SSSR, 119:5 (1958), 861–864 | MR | Zbl

[5] A. N. Kolmogorov, “Ob entropii na edinitsu vremeni kak metricheskom invariante avtomorfizmov”, DAN SSSR, 124:4 (1959), 754–755 | MR | Zbl

[6] I. P. Kornfeld, Ya. G. Sinai, S. V. Fomin, Ergodicheskaya teoriya, Nauka, M., 1980 | MR

[7] V. A. Rokhlin, “Lektsii po entropiinoi teorii preobrazovanii s invariantnoi meroi”, UMN, 22:2 (1967), 3–56 | MR | Zbl

[8] Ya. G. Sinai, “O ponyatii entropii dinamicheskoi sistemy”, DAN SSSR, 124:4 (1959), 768–770 | MR

[9] Ya. G. Sinai, “O slabom izomorfizme preobrazovanii s invariantnoi meroi”, Mat. sb., 63(105):1 (1964), 23–42

[10] Ya. G. Sinai, “Pismo v redatsktsiyu zhurnala ‘Uspekhi matematicheskikh nauk’ ”, UMN, 20:4 (1965), 232 | MR

[11] Ya. G. Sinai, “Author's comments to the paper ‘On the notion of entropy of a dynamical system’ ”: Ya. G. Sinai, Selecta, v. 1, 2014, 9–10