On the noncommutative deformation of the operator graph corresponding to the Klein group
    
    
  
  
  
      
      
      
        
Zapiski Nauchnykh Seminarov POMI, Representation theory, dynamical systems, combinatorial methods. Part XXV, Tome 436 (2015), pp. 49-75
    
  
  
  
  
  
    
      
      
        
      
      
      
    Voir la notice de l'article provenant de la source Math-Net.Ru
            
              			We study the noncommutative operator graph $\mathcal L_\theta$ depending on a complex parameter $\theta$ recently introduced by M. E. Shirokov to construct channels with positive quantum zero-error capacity having vanishing $n$-shot capacity. We define a noncommutative group $G$ and an algebra $\mathcal A_\theta$ which is a quotient of $\mathbb CG$ with respect to a special algebraic relation depending on $\theta$ such that the matrix representation $\phi$ of $\mathcal A_\theta$ results in the algebra $\mathcal M_\theta$ generated by $\mathcal L_\theta$. In the case of $\theta=\pm1$, the representation $\phi$ degenerates into an faithful representation of $\mathbb CK_4$, where $K_4$ is the Klein group. Thus, $\mathcal L_\theta$ can be regarded as a noncommutative deformation of the graph associated with the Klein group.
			
            
            
            
          
        
      @article{ZNSL_2015_436_a2,
     author = {G. G. Amosov and I. Yu. Zhdanovskiy},
     title = {On the noncommutative deformation of the operator graph corresponding to the {Klein} group},
     journal = {Zapiski Nauchnykh Seminarov POMI},
     pages = {49--75},
     publisher = {mathdoc},
     volume = {436},
     year = {2015},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/ZNSL_2015_436_a2/}
}
                      
                      
                    TY - JOUR AU - G. G. Amosov AU - I. Yu. Zhdanovskiy TI - On the noncommutative deformation of the operator graph corresponding to the Klein group JO - Zapiski Nauchnykh Seminarov POMI PY - 2015 SP - 49 EP - 75 VL - 436 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/ZNSL_2015_436_a2/ LA - en ID - ZNSL_2015_436_a2 ER -
G. G. Amosov; I. Yu. Zhdanovskiy. On the noncommutative deformation of the operator graph corresponding to the Klein group. Zapiski Nauchnykh Seminarov POMI, Representation theory, dynamical systems, combinatorial methods. Part XXV, Tome 436 (2015), pp. 49-75. http://geodesic.mathdoc.fr/item/ZNSL_2015_436_a2/