On the noncommutative deformation of the operator graph corresponding to the Klein group
Zapiski Nauchnykh Seminarov POMI, Representation theory, dynamical systems, combinatorial methods. Part XXV, Tome 436 (2015), pp. 49-75 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice du chapitre de livre

We study the noncommutative operator graph $\mathcal L_\theta$ depending on a complex parameter $\theta$ recently introduced by M. E. Shirokov to construct channels with positive quantum zero-error capacity having vanishing $n$-shot capacity. We define a noncommutative group $G$ and an algebra $\mathcal A_\theta$ which is a quotient of $\mathbb CG$ with respect to a special algebraic relation depending on $\theta$ such that the matrix representation $\phi$ of $\mathcal A_\theta$ results in the algebra $\mathcal M_\theta$ generated by $\mathcal L_\theta$. In the case of $\theta=\pm1$, the representation $\phi$ degenerates into an faithful representation of $\mathbb CK_4$, where $K_4$ is the Klein group. Thus, $\mathcal L_\theta$ can be regarded as a noncommutative deformation of the graph associated with the Klein group.
@article{ZNSL_2015_436_a2,
     author = {G. G. Amosov and I. Yu. Zhdanovskiy},
     title = {On the noncommutative deformation of the operator graph corresponding to the {Klein} group},
     journal = {Zapiski Nauchnykh Seminarov POMI},
     pages = {49--75},
     year = {2015},
     volume = {436},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/ZNSL_2015_436_a2/}
}
TY  - JOUR
AU  - G. G. Amosov
AU  - I. Yu. Zhdanovskiy
TI  - On the noncommutative deformation of the operator graph corresponding to the Klein group
JO  - Zapiski Nauchnykh Seminarov POMI
PY  - 2015
SP  - 49
EP  - 75
VL  - 436
UR  - http://geodesic.mathdoc.fr/item/ZNSL_2015_436_a2/
LA  - en
ID  - ZNSL_2015_436_a2
ER  - 
%0 Journal Article
%A G. G. Amosov
%A I. Yu. Zhdanovskiy
%T On the noncommutative deformation of the operator graph corresponding to the Klein group
%J Zapiski Nauchnykh Seminarov POMI
%D 2015
%P 49-75
%V 436
%U http://geodesic.mathdoc.fr/item/ZNSL_2015_436_a2/
%G en
%F ZNSL_2015_436_a2
G. G. Amosov; I. Yu. Zhdanovskiy. On the noncommutative deformation of the operator graph corresponding to the Klein group. Zapiski Nauchnykh Seminarov POMI, Representation theory, dynamical systems, combinatorial methods. Part XXV, Tome 436 (2015), pp. 49-75. http://geodesic.mathdoc.fr/item/ZNSL_2015_436_a2/

[1] A. S. Holevo, Quantum Systems, Channels, Information. A Mathematical Introduction, De Gruyter, Berlin, 2012 | MR | Zbl

[2] R. Duan, S. Severini, A. Winter, “Zero-error communication via quantum channels, non-commutative graphs and a quantum Lovasz theta function”, IEEE Trans. Inf. Theory, 59 (2013), 1164–1174 ; arXiv: 1002.2514 | DOI | MR

[3] T. S. Cubitt, J. Chen, A. W. Harrow, Superactivation of the asymptotic zero-error classical capacity of a quantum channel, 2009, arXiv: 0906.2547 | MR

[4] R. Duan, Super-activation of zero-error capacity of noisy quantum channels, 2009, arXiv: 0906.2527[quant-ph]

[5] M. E. Shirokov, “On channels with positive quantum zero-error capacity having vanishing $n$-shot capacity”, Quantum Inf. Process., 14:8 (2015), 3057–3074 | DOI | MR | Zbl

[6] T. S. Cubitt, M. B. Ruskai, G. Smith, “The structure of degradable quantum channels”, J. Math. Phys., 49:2 (2008), 102104 | DOI | MR | Zbl

[7] N. Yu. Reshetikhin, L. A. Takhtadzhyan, L. D. Faddeev, “Quantization of Lie groups and Lie algebras”, Leningrad Math. J., 1:1 (1990), 193–225 | MR | Zbl

[8] A. G. Kurosh, “Die Untergruppen der freien Produkte von beliebigen Gruppen”, Math. Ann., 109 (1934), 647–660 | DOI | MR

[9] R. Baer, F. Levi, “Freie Produkte und ihre Untergruppen”, Comp. Math., 3 (1936), 391–398 | MR | Zbl

[10] M. Takahasi, “Bemerkungen über den Untergruppensatz im freien Produkte”, Proc. Acad. Tokyo, 20 (1944), 589–594 | DOI | MR | Zbl

[11] H. Kraft, Geometrische Methoden in der Invariantentheorie, Vieweg Verlag, Braunschweig–Wiesbaden, 1985 | MR | Zbl

[12] H. Cartan, S. Eilenberg, Homological Algebra, With an Appendix by D. A. Buchsbaum. Reprint of the 1956 original, Princeton Univ. Press, Princeton, NJ, 1999 | MR | Zbl

[13] S. Mac Lane, Homology, Reprint of the 1975 edition, Springer-Verlag, Berlin, 1995 | MR | Zbl

[14] S. Gelfand, Yu. Manin, Methods of Homological Algebra, 2nd edition, Springer-Verlag, Berlin, 2003 | MR | Zbl

[15] M. Kontsevich, A. Rosenberg, “Noncommutative smooth spaces”, The Gelfand Mathematical Seminars, 1996–1999, Birkhäuser, Boston, 2000, 85–108 | DOI | MR | Zbl

[16] C. Procesi, “The invariant theory of $n\times n$ matrices”, Adv. in Math., 19 (1976), 306–381 | DOI | MR | Zbl