On the noncommutative deformation of the operator graph corresponding to the Klein group
Zapiski Nauchnykh Seminarov POMI, Representation theory, dynamical systems, combinatorial methods. Part XXV, Tome 436 (2015), pp. 49-75

Voir la notice de l'article provenant de la source Math-Net.Ru

We study the noncommutative operator graph $\mathcal L_\theta$ depending on a complex parameter $\theta$ recently introduced by M. E. Shirokov to construct channels with positive quantum zero-error capacity having vanishing $n$-shot capacity. We define a noncommutative group $G$ and an algebra $\mathcal A_\theta$ which is a quotient of $\mathbb CG$ with respect to a special algebraic relation depending on $\theta$ such that the matrix representation $\phi$ of $\mathcal A_\theta$ results in the algebra $\mathcal M_\theta$ generated by $\mathcal L_\theta$. In the case of $\theta=\pm1$, the representation $\phi$ degenerates into an faithful representation of $\mathbb CK_4$, where $K_4$ is the Klein group. Thus, $\mathcal L_\theta$ can be regarded as a noncommutative deformation of the graph associated with the Klein group.
@article{ZNSL_2015_436_a2,
     author = {G. G. Amosov and I. Yu. Zhdanovskiy},
     title = {On the noncommutative deformation of the operator graph corresponding to the {Klein} group},
     journal = {Zapiski Nauchnykh Seminarov POMI},
     pages = {49--75},
     publisher = {mathdoc},
     volume = {436},
     year = {2015},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/ZNSL_2015_436_a2/}
}
TY  - JOUR
AU  - G. G. Amosov
AU  - I. Yu. Zhdanovskiy
TI  - On the noncommutative deformation of the operator graph corresponding to the Klein group
JO  - Zapiski Nauchnykh Seminarov POMI
PY  - 2015
SP  - 49
EP  - 75
VL  - 436
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/ZNSL_2015_436_a2/
LA  - en
ID  - ZNSL_2015_436_a2
ER  - 
%0 Journal Article
%A G. G. Amosov
%A I. Yu. Zhdanovskiy
%T On the noncommutative deformation of the operator graph corresponding to the Klein group
%J Zapiski Nauchnykh Seminarov POMI
%D 2015
%P 49-75
%V 436
%I mathdoc
%U http://geodesic.mathdoc.fr/item/ZNSL_2015_436_a2/
%G en
%F ZNSL_2015_436_a2
G. G. Amosov; I. Yu. Zhdanovskiy. On the noncommutative deformation of the operator graph corresponding to the Klein group. Zapiski Nauchnykh Seminarov POMI, Representation theory, dynamical systems, combinatorial methods. Part XXV, Tome 436 (2015), pp. 49-75. http://geodesic.mathdoc.fr/item/ZNSL_2015_436_a2/